Publications by authors named "Karin Barnouin"

Most drugs are administered to children orally. An information gap remains on the protein abundance of small intestinal drug-metabolizing enzymes (DMEs) and drug transporters (DTs) across the pediatric age range, which hinders precision dosing in children. To explore age-related differences in DMEs and DTs, surgical leftover intestinal tissues from pediatric and adult jejunum and ileum were collected and analyzed by targeted quantitative proteomics for apical sodium-bile acid transporter, breast cancer resistance protein (BCRP), monocarboxylate transporter 1 (MCT1), multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein (MRP) 2, MRP3, organic anion-transporting polypeptide 2B1, organic cation transporter 1, peptide transporter 1 (PEPT1), CYP2C19, CYP3A4, CYP3A5, UDP glucuronosyltransferase (UGT) 1A1, UGT1A10, and UGT2B7.

View Article and Find Full Text PDF

The immunosuppressive protein PD-L1 is upregulated in many cancers and contributes to evasion of the host immune system. The relative importance of the tumor microenvironment and cancer cell-intrinsic signaling in the regulation of PD-L1 expression remains unclear. We report that oncogenic RAS signaling can upregulate tumor cell PD-L1 expression through a mechanism involving increases in PD-L1 mRNA stability via modulation of the AU-rich element-binding protein tristetraprolin (TTP).

View Article and Find Full Text PDF

Receptor tyrosine kinases exhibit a variety of activation mechanisms despite highly homologous catalytic domains. Such diversity arises through coupling of extracellular ligand-binding portions with highly variable intracellular sequences flanking the tyrosine kinase domain and specific patterns of autophosphorylation sites. Here, we show that the juxtamembrane (JM) segment enhances RET catalytic domain activity through Y687.

View Article and Find Full Text PDF

Long wavelength ultraviolet radiation (UVA, 320-400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS.

View Article and Find Full Text PDF

Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs).

View Article and Find Full Text PDF

Centrioles are the major constituents of the animal centrosome, in which Plk4 kinase serves as a master regulator of the duplication cycle. Many eukaryotes also contain numerous peripheral particles known as centriolar satellites. While centriolar satellites aid centriole assembly and primary cilium formation, it is unknown whether Plk4 plays any regulatory roles in centriolar satellite integrity.

View Article and Find Full Text PDF

Fission yeast undergoes growth polarity transition from monopolar to bipolar during G2 phase, designated NETO (New End Take Off). It is known that NETO onset involves two prerequisites, the completion of DNA replication and attainment of a certain cell size. However, the molecular mechanism remains unexplored.

View Article and Find Full Text PDF

To decipher the molecular basis for RET kinase activation and oncogenic deregulation, we defined the temporal sequence of RET autophosphorylation by label-free quantitative mass spectrometry. Early autophosphorylation sites map to regions flanking the kinase domain core, while sites within the activation loop only form at later time points. Comparison with oncogenic RET kinase revealed that late autophosphorylation sites become phosphorylated much earlier than wild-type RET, which is due to a combination of an enhanced enzymatic activity, increased ATP affinity, and surprisingly, by providing a better intermolecular substrate.

View Article and Find Full Text PDF

The pivotal role of LYRIC/AEG-1 in malignant transformation, tumourigenesis and chemo-resistance has previously been demonstrated in different cell types and sub-cellular compartments. The localisation of LYRIC/AEG-1 appears crucial to its function and is regulated by three lysine-rich nuclear localisation signal regions, one of which was previously demonstrated to be modified by ubiquitin. Here we show that mutation of LYRIC/AEG-1 at K486 and K491 results in a loss of ubiquitination.

View Article and Find Full Text PDF

In migrating NRK cells, aPKCs control the dynamics of turnover of paxillin-containing focal adhesions (FA) determining migration rate. Using a proteomic approach (two-dimensional fluorescence difference gel electrophoresis), dynein intermediate chain 2 (dynein IC2) was identified as a protein that is phosphorylated inducibly during cell migration in a PKC-regulated manner. By gene silencing and co-immunoprecipitation studies, we show that dynein IC2 regulates the speed of cell migration through its interaction with paxillin.

View Article and Find Full Text PDF

IMAC can be used to selectively enrich phosphopeptides from complex peptide mixtures, but co-retention of acidic peptides together with the failure to retain some phosphopeptides restricts the general utility of the method. In this study Fe(III)-IMAC was qualitatively and quantitatively assessed using a panel of phosphopeptides, both synthetic and derived from proteolysis of known phosphoproteins, to identify the causes of success and failure in the application of this technique. Here we demonstrate that, as expected, peptides with a more acidic amino acid content are generally more efficiently purified and detected by MALDI-MS after Fe(III)-IMAC than those with a more basic content.

View Article and Find Full Text PDF

The identification and characterization of binding partners from protein complexes is increasingly undertaken by mass spectrometry because of its high sensitivity and expedient elucidation of protein structure by accurate mass measurement. A variety of affinity purification methods including immunoprecipitation and glutathione-S-transferase (GST) pull-downs are commonly employed for the isolation of protein complexes and coupled to gel electrophoresis for further separation and basic information with regard to their constituents. For the successful analysis of gel-separated proteins by mass spectrometry, additional sample preparation steps involving sample clean-up, proteolysis, and peptide recovery are essential.

View Article and Find Full Text PDF

Advances in genomic and proteomic technologies combined with molecular and cell biology have together enabled the identification of numerous genes and their products. Two-dimensional gel electrophoresis (2DE) is especially useful in the study of protein-protein interactions as it permits an improved separation of proteins as well as the detection of specific interacting protein isoform(s) of a protein resulting from post-translational modification. The investigation of interacting proteins using 2DE can be complemented by identification of the proteins by mass spectrometry.

View Article and Find Full Text PDF

A protocol combining immobilized metal ion affinity chromatography and beta-elimination with concurrent Michael addition has been developed for enhanced analysis of protein phosphorylation. Immobilized metal ion affinity chromatography was initially used to enrich for phosphorylated peptides. Beta-elimination, with or without concurrent Michael addition, was then subsequently used to simultaneously elute and derivatize phosphopeptides bound to the chromatography resin.

View Article and Find Full Text PDF

P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated.

View Article and Find Full Text PDF

To defend against the potential damages induced by reactive oxygen species, proliferating cells enter a transient cell cycle arrest. We treated mouse fibroblasts with H(2)O(2) and found that sublethal doses of H(2)O(2) induced a transient multi-phase cell cycle arrest at the G(1), S, and G(2) phases but not the M phase. Western blot analysis demonstrated that this transient cell cycle arrest is associated with the down-regulation of cyclins D1 and D3 and up-regulation of the CKI p21(Cip1) expression.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionotaubg4bnedigjtmgl9o3o20jl60n373): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once