Publications by authors named "Karin Aberg"

Objectives: The use of magnetic resonance imaging (MRI) is safe from a long-term perspective since there are no known cumulative risks for patients or personnel. However, the technique comes with several acute risks associated with the powerful electromagnetic fields that are necessary to produce medical images. These risks include, among other things, a projectile hazard, loud noise, and the risk of heating.

View Article and Find Full Text PDF

Background: Grass pollen allergy is one of the most common allergies worldwide.

Objective: The aim of this study was to evaluate the usefulness of grass pollen allergen molecules for prediction of grass pollen allergy during childhood and up to adolescence.

Method: Questionnaire data and sera obtained from the study subjects at the ages of 4, 8, and 16 years from the population-based Barn/Children Allergy Milieu Stockholm Epidemiology birth cohort were used.

View Article and Find Full Text PDF

Cardiac implantable electronic devices (CIED) not an absolute contraindication to MRI Conventional cardiac implantable electronic devices (CIED) are presently not an absolute contraindication to magnetic resonance imaging (MRI), which thus is accessible for device patients depending on risk/benefit assessments. While current literature suggests that MRI can be performed without risk if precautions are taken, adverse events have been reported. The number of MR conditional CIEDs is rapidly increasing, and depending on device and electrode combinations, patients can now undergo advanced MRI at 3.

View Article and Find Full Text PDF

Context: There is growing recognition that a large number of individuals living in Western society are chronically sleep deprived. Sleep deprivation is associated with an increase in food consumption and appetite. However, the brain regions that are most susceptible to sleep deprivation-induced changes when processing food stimuli are unknown.

View Article and Find Full Text PDF

The skin is the first line of defense against microbial infection, and psychological stress (PS) has been shown to have adverse effects on cutaneous barrier function. Here we show that PS increased the severity of group A Streptococcus pyogenes (GAS) cutaneous skin infection in mice; this was accompanied by increased production of endogenous glucocorticoids (GCs), which inhibited epidermal lipid synthesis and decreased lamellar body (LB) secretion. LBs encapsulate antimicrobial peptides (AMPs), and PS or systemic or topical GC administration downregulated epidermal expression of murine AMPs cathelin-related AMP and beta-defensin 3.

View Article and Find Full Text PDF

Human epidermis elaborates two small cationic, highly hydrophobic antimicrobial peptides (AMP), beta-defensin 2 (hBD2), and the carboxypeptide cleavage product of human cathelicidin (hCAP18), LL-37, which are co-packaged along with lipids within epidermal lamellar bodies (LBs) before their secretion. Because of their colocalization, we hypothesized that AMP and barrier lipid production could be coregulated by altered permeability barrier requirements. mRNA and immunostainable protein levels for mBD3 and cathelin-related antimicrobial peptide (CRAMP) (murine homologues of hBD2 and LL-37, respectively) increase 1-8 hours after acute permeability barrier disruption and normalize by 24 hours, kinetics that mirror the lipid metabolic response to permeability barrier disruption.

View Article and Find Full Text PDF

Hailey-Hailey disease (HHD) (MIM 16960) is an autosomal-dominant blistering skin disease caused by a mutation in the Ca2+-ATPase ATP2C1 (protein SPCA1), responsible for controlling Ca2+ concentrations in the cytoplasm and Golgi in human keratinocytes. Cytosolic Ca2+ concentrations, in turn, play a major role in the regulation of keratinocyte differentiation. To study how ATP2C1 function impacts keratinocyte differentiation, we assessed involucrin expression in HHD keratinocytes.

View Article and Find Full Text PDF

Keratinocyte differentiation, adhesion and motility are directed by extracellular Ca2+ concentration increases, which in turn increase intracellular Ca2+ levels. Normal keratinocytes, in contrast to most non-excitable cells, require Ca2+ release from both Golgi and endoplasmic reticulum Ca2+ stores for efficient Ca2+ signaling. Dysfunction of the Golgi human secretory pathway Ca2+-ATPase hSPCA1, encoded by ATP2C1, abrogates Ca2+ signaling and causes the acantholytic genodermatosis, Hailey-Hailey disease.

View Article and Find Full Text PDF