Publications by authors named "Karim-Jean Armache"

Reversible modification of the histone H3 N-terminal tail is critical in regulating the chromatin structure, gene expression, and cell states, while its dysregulation contributes to disease pathogenesis. Understanding the crosstalk between H3 tail modifications in nucleosomes constitutes a central challenge in epigenetics. Here, we describe an engineered sortase transpeptidase, cW11, that displays highly favorable properties for introducing scarless H3 tails onto nucleosomes.

View Article and Find Full Text PDF

Individuals with monoallelic pathogenic variants in the histone lysine methyltransferase DOT1L display global developmental delay and varying congenital anomalies. However, the impact of monoallelic loss of remains unclear. Here, we present a largely female cohort of 11 individuals with variants with developmental delays and dysmorphic facial features.

View Article and Find Full Text PDF

Epigenetic inheritance of silent chromatin domains is fundamental to cellular memory during embryogenesis, but it must overcome the dilution of repressive histone modifications during DNA replication. One such modification, histone H2A lysine 119 monoubiquitination (H2AK119Ub), needs to be re-established by the Polycomb repressive complex 1 (PRC1) E3 ligase to restore the silent Polycomb domain. However, the exact mechanism behind this restoration remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Reversible modifications of the histone H3 N-terminal tail play a key role in regulating chromatin structure, gene expression, and cell states, with their dysregulation linked to diseases.
  • The engineered sortase transpeptidase cW11 allows for efficient and seamless introduction of modified H3 tails onto nucleosomes, facilitating research on the effects of these modifications.
  • cW11 enables advanced proteomics techniques for studying histone H3 modification interactions after treatments, providing valuable insights for epigenetics research and potential therapeutic applications.
View Article and Find Full Text PDF

During tumor development, promoter CpG islands that are normally silenced by Polycomb repressive complexes (PRCs) become DNA-hypermethylated. The molecular mechanism by which de novo DNA methyltransferase(s) [DNMT(s)] catalyze CpG methylation at PRC-regulated regions remains unclear. Here, we report a cryo-electron microscopy structure of the DNMT3A long isoform (DNMT3A1) amino-terminal region in complex with a nucleosome carrying PRC1-mediated histone H2A lysine-119 monoubiquitination (H2AK119Ub).

View Article and Find Full Text PDF

During tumor development, promoter CpG islands (CGIs) that are normally silenced by Polycomb repressive complexes (PRCs) become DNA hypermethylated. The molecular mechanism by which DNA methyltransferase(s) catalyze CpG methylation at PRC-regulated regions remains unclear. Here we report a cryo-EM structure of the DNMT3A long isoform (DNMT3A1) N-terminal region in complex with a nucleosome carrying PRC1-mediated histone H2A lysine 119 monoubiquitination (H2AK119Ub).

View Article and Find Full Text PDF
Article Synopsis
  • * A new quantitative method for generating hydroxyl radicals is introduced, using common laboratory equipment and reagents to facilitate protein oxidative footprinting.
  • * The effectiveness of this method is illustrated through oxidation analyses of various proteins, including lysozyme and RAS-monobody complexes, achieving high-resolution mapping of protein structures at the level of single amino acids.
View Article and Find Full Text PDF

Giant viruses (Nucleocytoviricota) have a largely conserved lifecycle, yet how they cram their large genomes into viral capsids is mostly unknown. The major capsid protein and the packaging ATPase (pATPase) comprise a highly conserved morphogenesis module in giant viruses, yet some giant viruses dispense with an icosahedral capsid, and others encode multiple versions of pATPases, including conjoined ATPase doublets, or encode none. Some giant viruses have acquired DNA-condensing proteins to compact their genomes, including sheath-like structures encasing folded DNA or densely packed viral nucleosomes that show a resemblance to eukaryotic nucleosomes at the telomeres.

View Article and Find Full Text PDF

SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity.

View Article and Find Full Text PDF
Article Synopsis
  • Histone H2A lysine 119 (H2AK119Ub) is modified by the Polycomb repressive complex 1 and later deubiquitinated by the PR-DUB complex, which prevents unwanted gene silencing.
  • Key subunits of the PR-DUB complex, BAP1 and ASXL1, are frequently mutated in various cancers, highlighting their importance in regulating gene expression.
  • A cryo-EM structure study reveals how BAP1 and ASXL1 interact with histones and DNA, explaining their specificity for H2AK119Ub and how mutations can lead to cancer-related dysregulation of this process.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how two types of heterochromatin, HP1 and Polycomb, remain distinct in yeast
  • It reveals that the Polycomb-like protein Ccc1 stops H3K27me3 from forming at HP1 domains through a process driven by phase separation
  • Mutations affecting Ccc1's structure disrupt its function, leading to unwanted H3K27me3 at HP1 domains and highlighting the significance of biophysical properties in chromatin regulation.
View Article and Find Full Text PDF

The intricate regulation of chromatin plays a key role in controlling genome architecture and accessibility. Histone lysine methyltransferases regulate chromatin by catalyzing the methylation of specific histone residues but are also hypothesized to have equally important non-catalytic roles. SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation, and is dysregulated in several cancers.

View Article and Find Full Text PDF

Unlabelled: The maintenance of gene expression patterns during metazoan development is achieved by the actions of Polycomb group (PcG) complexes. An essential modification marking silenced genes is monoubiquitination of histone H2A lysine 119 (H2AK119Ub) deposited by the E3 ubiquitin ligase activity of the non-canonical Polycomb Repressive Complex 1. The Polycomb Repressive Deubiquitinase (PR-DUB) complex cleaves monoubiquitin from histone H2A lysine 119 (H2AK119Ub) to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing.

View Article and Find Full Text PDF

The two doublet histones of Marseillevirus are distantly related to the four eukaryotic core histones and wrap 121 base pairs of DNA to form remarkably similar nucleosomes. By permeabilizing Marseillevirus virions and performing genome-wide nuclease digestion, chemical cleavage, and mass spectrometry assays, we find that the higher-order organization of Marseillevirus chromatin fundamentally differs from that of eukaryotes. Marseillevirus nucleosomes fully protect DNA within virions as closely abutted 121-bp DNA-wrapped cores without linker DNA or phasing along genes.

View Article and Find Full Text PDF

The common histones H2A, H2B, H3, and H4 are the characteristic components of eukaryotic nucleosomes, which function to wrap DNA and compact the genome as well as to regulate access to DNA for transcription and replication in all eukaryotes. In the past two decades, histones have also been found to be encoded in some DNA viruses, where their functions and properties are largely unknown, though recently histones from two related viruses have been shown to form nucleosome-like structures in vitro. Viral histones can be highly similar to eukaryotic histones in primary sequence, suggesting they have been recently picked up from eukaryotic hosts, or they can be radically divergent in primary sequence and may occur as conjoined histone doublets, triplets, or quadruplets, suggesting ancient origins prior to the divergence of modern eukaryotes.

View Article and Find Full Text PDF

Certain large DNA viruses, including those in the Marseilleviridae family, encode histones. Here we show that fused histone pairs Hβ-Hα and Hδ-Hγ from Marseillevirus are structurally analogous to the eukaryotic histone pairs H2B-H2A and H4-H3. These viral histones form 'forced' heterodimers, and a heterotetramer of four such heterodimers assembles DNA to form structures virtually identical to canonical eukaryotic nucleosomes.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the selective incorporation of one of two paralogs of the catalytic subunit, EZH1 or EZH2. Each of these enzymes has specialized biological functions that may be partially explained by differences in the multivalent interactions they mediate with chromatin.

View Article and Find Full Text PDF

Dot1 (disruptor of telomeric silencing-1), the histone H3 lysine 79 (H3K79) methyltransferase, is conserved throughout evolution, and its deregulation is found in human leukemias. Here, we provide evidence that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone H2B ubiquitination (H2BUb). We further demonstrate that this stimulatory effect is specific to acetylation of lysine 16 (H4K16ac), a modification central to chromatin structure.

View Article and Find Full Text PDF

Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes.

View Article and Find Full Text PDF

Polycomb Group (PcG) proteins form memory of transient transcriptional repression that is necessary for development. In Drosophila, DNA elements termed Polycomb Response Elements (PREs) recruit PcG proteins. How PcG activities are targeted to PREs to maintain repressed states only in appropriate developmental contexts has been difficult to elucidate.

View Article and Find Full Text PDF

The Origin Recognition Complex (ORC) is essential for replication, heterochromatin formation, telomere maintenance and genome stability in eukaryotes. Here we present the structure of the yeast Orc1 BAH domain bound to the nucleosome core particle. Our data reveal that Orc1, unlike its close homolog Sir3 involved in gene silencing, does not appear to discriminate between acetylated and non-acetylated lysine 16, modification states of the histone H4 tail that specify open and closed chromatin respectively.

View Article and Find Full Text PDF

The essential histone H3 lysine 79 methyltransferase Dot1L regulates transcription and genomic stability and is deregulated in leukemia. The activity of Dot1L is stimulated by mono-ubiquitination of histone H2B on lysine 120 (H2BK120Ub); however, the detailed mechanism is not understood. We report cryo-EM structures of human Dot1L bound to (1) H2BK120Ub and (2) unmodified nucleosome substrates at 3.

View Article and Find Full Text PDF
Article Synopsis
  • PRC2 plays a key role in maintaining gene expression patterns during development by modifying histone H3 at lysine 27, influencing gene silencing.
  • Both subunits of PRC2, EZH1 and EZH2, can perform mono- and dimethylation, but only EZH2 is heavily activated for trimethylation in mouse embryonic stem cells.
  • AEBP2 enhances the activity of both PRC2 complexes through a separate mechanism, highlighting the importance of different gene-regulating factors during cellular differentiation.
View Article and Find Full Text PDF

Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data.

View Article and Find Full Text PDF