With the annual global electricity production exceeding 30,000 TWh, the safe transmission of electric power has been heavily relying on SF, the most potent industrial greenhouse gas. While promising SF alternatives have been proposed, their compatibilities with materials used in gas-insulated equipment (GIE) must be thoroughly studied. This is particularly true as the emerging SF alternatives generally leverage their relatively higher reactivity to achieve lower global warming potentials (GWPs).
View Article and Find Full Text PDFIn the design of MV AC and DC spacers, the predominant factors are surface and interface conditions. Design is generally carried out on specifications and standards which are based on long-term experience and lab testing. However, the diffusion of power electronics with a trend to increase electric field, switching frequency, and rise time to achieve higher power density calls for an innovative, global approach to optimized insulation system design.
View Article and Find Full Text PDF