Publications by authors named "Karim Solaimani"

Floods in Iran cause a lot of damage in different places every year. The 2019 floods of the Gorgan and Atrak rivers basins in the north of Iran were one of the most destructive events in this country. Therefore, investigating the flood hazard of these areas is very necessary to manage probable future floods.

View Article and Find Full Text PDF

Sustainable production in water-scarce regions entails not to overshoot the sustainable blue water availability (BWA), which in turn requires addressing environmental flow requirements (EFRs). We explored the long-term effects of agricultural development, before (1984-1997) and during (1998-2018) the operation of the modern irrigation and drainage network of Tajan (TIDN), northern Iran, on the sustainability of blue water consumptions. A combination of different methods were applied to estimate hydrological EFRs of rivers, ab-bandans (traditional water reservoirs), and groundwater resources.

View Article and Find Full Text PDF

Bivariate frequency analysis of extreme rainfall and runoff is crucial for water resource planning and management in a river basin. This study is aimed at accounting for uncertainties in bivariate analysis of extreme rainfall-runoff frequency in the Taleghan watershed, one of the major watersheds in northern Iran, using copulas. Two types of paired rainfall and runoff data, including annual maximum series (AMS) and peaks over threshold (POT) are adopted to investigate the uncertainties that arose due to the input data.

View Article and Find Full Text PDF

Land subsidence is a phenomenon that involves the lowering or settling of the earth's surface due to various factors. The land subsidence due to groundwater withdrawal over the world has been seen in many areas. A decrease in ground water level would cause an increase in effective stresses at clay layers which results consolidation of lower layers.

View Article and Find Full Text PDF

In this study, first by using Smirnov-Kolmogorov method, the consistency of data was applied in order to optimize the relationship between water and sediment discharge rates in Amameh indicator watershed of Iran. After the consistency and authenticity of data were confirmed, by means of daily mean discharge and a software called Technical Hydrology (TH), monthly hydrograph was sketched for total period of 1969-2000 in Kamarkhani station in Amameh watershed outlet. Then, different models were tested using the equation of sediment transport and considering hydrological, climatic and biological parameters such as hydrograph situation, classification of discharge rate and the time of flow measurement.

View Article and Find Full Text PDF