Publications by authors named "Karim Muratov"

Ligand-enabled oxidative addition of Csp-X bonds to Au(I) centers has recently appeared as a valuable strategy for the development of catalytic RedOx processes. Several cross-coupling reactions that were previously considered difficult to achieve were reported lately, thus expanding the synthetic potential of gold(I) complexes beyond the traditional nucleophilic functionalization of π-systems. MeDalPhos has played an important role in this development and, despite several studies on alternative structures, remains, so far, the only general ligand for such process.

View Article and Find Full Text PDF

This paper presents an analysis and theoretical model for assessing the quality and accuracy of wire-cut electro-discharge machining (WEDM) of products made from novel heat-resistant nickel alloys such as CrNi56KVMTYB. It is observed that WEDM processing of Ni alloy led to high surface roughness for the thick specimens, and electrical parameters such as pulse duration for the selected range depict an insignificant role in the value of surface roughness. On the other hand, the cut width of the machined surface decreases as the pulse duration increases, while the cut width is elevated for thick workpieces.

View Article and Find Full Text PDF

The study was performed to determine the optimum flushing condition for electrical discharge machining (EDM) of functional material titanium VT6 obtained by plasma cladding with a thermal cycle. Copper is used as an electrode tool (ET) to machine functional materials. The optimum flushing flows are analyzed theoretically by using ANSYS CFX 20.

View Article and Find Full Text PDF

This study investigates the effect of electrolytic plasma processing on the degree of defective layer removal from a damaged layer obtained after manufacturing operations. Electrical discharge machining (EDM) is widely accepted in modern industries for product development. However, these products may have undesirable surface defects that may require secondary operations.

View Article and Find Full Text PDF

In the present work, the effect of tool surface roughness on energy channelization behavior was analyzed during the fabrication of micro holes by an electrochemical spark machining (ECSM) process. In this study, rough tools were fabricated by a rotary mode multi tip electric discharge machining (RM-MT-EDM) process. The electrical characterization was also carried out to investigate the electric field intensity over the surface of tool electrode, and it was found that the use of rough tools improves the electric field intensity by 265.

View Article and Find Full Text PDF

The study and development of the technological foundations for creating a textured surface using an electrode tool obtained by the method of additive manufacturing are the purpose of the work. Methods for obtaining textured surfaces and for creating a tool electrode for electrical discharge machining are considered in this work. The modeling of the electrodetool, analysis of internal stresses during its manufacture by the selective laser melting method, and the manufacture of electrodes are considered.

View Article and Find Full Text PDF

The regularities of the formation of the resulting raster tool trajectories based on Lissajous figures for the lapping process of planes are established. This makes it possible to maximize the cutting ability of the tool, which contributes to its more uniform wear and increased productivity and processing quality. Optimal parameters of productivity and roughness of the treated surface during lapping of zirconium ceramics are achieved through the use of ASM paste 28/20 µm.

View Article and Find Full Text PDF

The confinement of a catalytic site is an efficient strategy to control a reaction and modulate its selectivity. In the present work, a new class of structurally simple and easily accessible bulky tri-(ortho-biaryl)phosphine ligands were accessed, and their gold(I) complexes synthesized. Their X-ray diffraction analysis and the comparative evaluation of their V % and G steric parameters against a series of gold complexes commonly employed in catalysis demonstrated their confined nature.

View Article and Find Full Text PDF

Our study was devoted to increasing the efficiency of electrical discharge machining of high-quality parts with a composite electrode tool. We analyzed the chemical composition of the surface layer of the processed product, microhardness, the parameter of roughness of the treated surface, residual stresses, and mechanical properties under tension and durability with low-cycle fatigue of steel 15. Our objective was to study the effect of the process of copy-piercing electrical discharge machining on the performance of parts using composite electrode tools.

View Article and Find Full Text PDF

New types of profile products make complex use of bimetals. These materials possess a set of properties such as strength, corrosion resistance, thermal conductivity, heat resistance, wear resistance. For the processing of such products, it is advisable to use electrophysical processing methods, one of which is the technology of copy-piercing electrical discharge machining (EDM).

View Article and Find Full Text PDF

The present study reports on the method used to obtain the reliable outcomes for different responses in electric discharge machining (EDM) of metal matrix composites (MMCs). The analytic hierarchy process (AHP), a multiple criteria decision-making technique, was used to achieve the target outcomes. The process parameters were varied to evaluate their effect on the material erosion rate (), surface roughness (SR), and residual stresses (σ) following Taguchi's experimental design.

View Article and Find Full Text PDF

The article is devoted to increasing the efficiency of electrical discharge machining of special-purpose items with composite electrode tools. The subject of research is the parameter of the roughness of the processed surface and the work of the electro-discharge machining (EDM) of 40Crsteel in various modes of electrical discharge machining. The aim of the work is to increase the efficiency of the process of copy-piercing electrical discharge machining of parts introduced into the composition of a special-purpose product and the use of electrode tools with the introduction of 20% graphite.

View Article and Find Full Text PDF

Recently, the range of crystal materials used in industrial microelectronics has significantly increased. Lithium niobate single crystals are most often used in integrated optics, due to the high values of optical and electro-optical coefficients. An integral-optical circuit based on a lithium niobate single crystal is a key element in the production of local high-precision fiber-optic gyroscopic devices used in civil and military aviation and marine technologies.

View Article and Find Full Text PDF

This study presents the analysis of wire-cut electro-discharge machining (WIRE-EDM) of polymer composite material (PCM). The conductivity of the workpiece is improved by using 1 mm thick titanium plates (layers) sandwiched on the PCM. Input process parameters selected are variable voltage (50-100 V), pulse duration (5-15 μs), and pause time (10-50 μs), while the cut-width (kerf) is recognized as an output parameter.

View Article and Find Full Text PDF

In the present work, a hybrid magnetic field assisted powder mixed electrical discharge machining had been carried out on the Aluminum-Silicon Carbide (Al-SiC) metal matrix composite. The aim of the study was to obtain higher surface finish, and enhanced material removal rate. The dielectric mediums employed were plain EDM oil, SiCp mixed and graphite powder mixed EDM oil for flushing through the tube electrode.

View Article and Find Full Text PDF

This review describes the gold-catalyzed reactions of specially activated alkynes, allenes, and alkenes. Such species are characterized by the presence of either electron-donating or electron-withdrawing groups as substituents of the carbon π-system. They are intrinsically polarized, and when compared to their nonspecially activated counterparts can therefore be involved in gold-catalyzed transformations featuring increased regio-, stereo-, and chemoselectivities.

View Article and Find Full Text PDF

The present article focused on the surface characterization of electric discharge machined duplex stainless steel (DSS-2205) alloy with three variants of electrode material (Graphite, Copper-Tungsten and Tungsten electrodes). Experimentation was executed as per Taguchi L18 orthogonal array to inspect the influence of electric discharge machining (EDM) parameters on the material removal rate and surface roughness. The results revealed that the discharge current (contribution: 45.

View Article and Find Full Text PDF

This paper presents wear and corrosion resistance analysis of carbon nanotubes coated with Ti-6Al-4V alloy processed by electro-discharge treatment. The reported work is carried out using Taguchi's L18 orthogonal array to design the experimental matrix by varying five input process parameters i.e.

View Article and Find Full Text PDF

A new class of anthracene complexes with a metal coordinated at the central ring was applied in catalysis for the first time. As a result, a simple and efficient protocol for reductive amination that involves CO as a reducing agent has been developed. The rhodium complex [(cyclooctadiene)Rh(C10H4Me2(OMe)4)]+ (1 mol%) catalyses such reactions under mild conditions (40-130 °C) and produces a variety of amines in good yields (74-95%) without affecting the functional groups.

View Article and Find Full Text PDF

An efficient and highly productive rhodium-catalyzed method for the synthesis of nitriles employing aldehydes or ketones, methyl cyanoacetate, water and carbon monoxide as starting materials has been developed. Simple rhodium chloride without any ligands can be used. The fine tuning of the substrate can lead to the activity higher than 5000 TON.

View Article and Find Full Text PDF

Rh-catalyzed one-step reductive amidation of aldehydes has been developed. The protocol does not require an external hydrogen source and employs carbon monoxide as a deoxygenative agent. The direction of the reaction can be altered simply by changing the solvent: reaction in THF leads to amides, whereas methanol favors formation of tertiary amines.

View Article and Find Full Text PDF

Development of novel, sustainable catalytic methodologies to provide access to amines represents a goal of fundamental importance. Herein we describe a systematic study for the construction of a variety of amines catalyzed by a well-defined homogeneous iridium complex using carbon monoxide as a reducing agent. The methodology was shown to be compatible with functional groups prone to reduction by hydrogen or complex hydrides.

View Article and Find Full Text PDF