Publications by authors named "Karim Hayoun"

Microbial life can thrive in the most inhospitable places, such as nuclear facilities with high levels of ionizing radiation. Using direct meta-analyses, we have previously highlighted the presence of bacteria belonging to twenty-five different genera in the highly radioactive water of the cooling pool of an operating nuclear reactor core. In the present study, we further characterize this specific environment by isolating and identifying some of these microorganisms and assessing their radiotolerance and their ability to decontaminate uranium.

View Article and Find Full Text PDF

Bile salt hydrolases (BSHs) are currently being investigated as target enzymes for metabolic regulators in humans and as growth promoters in farm animals. Understanding structural features underlying substrate specificity is necessary for inhibitor design. Here, we used a multidisciplinary workflow including mass spectrometry, mutagenesis, molecular dynamic simulations, machine learning, and crystallography to demonstrate substrate specificity in Lactobacillus salivarius BSH, the most abundant enzyme in human and farm animal intestines.

View Article and Find Full Text PDF

Several bacteria are able to degrade the major industrial solvent dichloromethane (DCM) by using the conserved dehalogenase DcmA, the only system for DCM degradation characterised at the sequence level so far. Using differential proteomics, we rapidly identified key determinants of DCM degradation for sp. MC8b, an unsequenced facultative methylotrophic DCM-degrading strain.

View Article and Find Full Text PDF

The microbial diversity encompassed by the environmental biosphere is largely unexplored, although it represents an extensive source of new knowledge and potentially of novel enzymatic catalysts for biotechnological applications. To determine the taxonomy of microorganisms, proteotyping by tandem mass spectrometry has proved its efficiency. Its latest extension, phylopeptidomics, adds a biomass quantitation perspective for mixtures of microorganisms.

View Article and Find Full Text PDF
Article Synopsis
  • Tandem mass spectrometry-based proteotyping offers superior accuracy and detail for identifying microorganisms compared to traditional whole-cell MALDI-TOF, especially in complex samples.
  • *The introduction of SP3 paramagnetic beads streamlines sample preparation, making high-throughput analysis possible with minimal risk of cross-contamination.
  • *A new 96-well plate platform coupled with double-barrel chromatography enables rapid and efficient identification of bacteria, distinguishing between pure strains and mixtures in just 55 hours.*
View Article and Find Full Text PDF

Tandem mass spectrometry-based proteotyping allows characterizing microorganisms in terms of taxonomy and is becoming an important tool for investigating microbial diversity from several ecosystems. Fast and automatable sample preparation for obtaining peptide pools amenable to tandem mass spectrometry is necessary for enabling proteotyping as a high-throughput method. First, the protocol to increase the yield of lysis of several representative bacterial and eukaryotic microorganisms was optimized by using a long and drastic bead-beating setting with 0.

View Article and Find Full Text PDF