Publications by authors named "Karim Elbayed"

-Phenylenediamine (PPD) has been classified as a strong skin allergen, but when it comes to toxicological concerns, benzoquinone diamine (BQDI), the primary oxidation derivative of PPD, is frequently considered and was shown to covalently bind nucleophilic residues on model peptides. However, tests in solution are far from providing a reliable model, as the cutaneous metabolism of PPD is not covered. We now report the synthesis of two C substituted isotopomers of PPD, 1,4-(C)-phenylenediamine and 2,5-(C)-phenylenediamine , and the investigation of their reactivity in reconstructed human epidermis (RHE) using the high resolution magic angle spinning (HRMAS) NMR technique.

View Article and Find Full Text PDF

Allergic contact dermatitis (ACD) is a reaction of the immune system resulting from skin sensitization to an exogenous hazardous chemical and leading to the activation of antigen-specific T-lymphocytes. The adverse outcome pathway (AOP) for skin sensitization identified four key events (KEs) associated with the mechanisms of this pathology, the first one being the ability of skin chemical sensitizers to modify epidermal proteins to form antigenic structures that will further trigger the immune system. So far, these interactions have been studied in solution using model nucleophiles such as amino acids or peptides.

View Article and Find Full Text PDF

Background: High-resolution magic angle spinning (HRMAS) is a nuclear magnetic resonance (NMR) technique that enables the characterization of metabolic phenotypes/metabolite profiles of cells, tissues, and organs, under both normal and pathological conditions, without resorting to time-consuming extraction techniques.

Objectives: To assess the impact of chemical skin sensitizers vs non-sensitizers on the metabolome of three-dimensional reconstructed human epidermis (RHE) by HRMAS NMR.

Methods: Based on the SENS-IS assay, 12 skin sensitizers and five non-sensitizing chemicals were investigated and applied on EpiSkin RHE at the published maximal non-irritating concentrations under the conditions of the test.

View Article and Find Full Text PDF

Intrahepatic transplantation of islets requires a lot of islets because more than 50% of the graft is lost during the 24 hours following transplantation. We analyzed, in a rat model, early post-transplantation inflammation using systemic inflammatory markers, or directly in islet-transplanted livers by immunohistochemistry. H HRMAS NMR was employed to investigate metabolic responses associated with the transplantation.

View Article and Find Full Text PDF

Chemical modification of epidermal proteins by skin sensitizers is the molecular event which initiates the induction of contact allergy. However, not all chemical skin allergens react directly as haptens with epidermal proteins but need either a chemical (prehaptens) or metabolic (prohaptens) activation step to become reactive. Cinnamyl alcohol has been considered a model prohapten, as this skin sensitizer has no intrinsic reactivity.

View Article and Find Full Text PDF

Background: Primary hyperparathyroidism (PHPT) may be related to a single gland disease or multiglandular disease, which requires specific treatments. At present, an operation is the only curative treatment for PHPT. Currently, there are no biomarkers available to identify these 2 entities (single vs.

View Article and Find Full Text PDF

Background: Methylisothiazolinone (MI) [with methylchloroisothiazolinone (MCI) in a ratio of 1:3, a well-recognized allergenic preservative] was released as an individual preservative in the 2000s for industrial products and in 2005 for cosmetics. The high level of exposure to MI since then has provoked an epidemic of contact allergy to MI, and an increase in MI/MCI allergy. There are questions concerning the MI/MCI cross-reaction pattern.

View Article and Find Full Text PDF

Adoption of new legislations and social pressure are pushing toward the development of alternative methods to the use of animals for the assessment of most toxicological end-points including skin sensitization. To that respect, much efforts have been put in the first step of the adverse outcome pathway focusing on chemical interactions taking place between sensitizing chemicals or haptens and epidermal proteins. However, these in chemico approaches have been so far only based on the use of model nucleophiles, amino acids, peptides, or proteins in water/buffer solution and focused mainly on thiol reactivity.

View Article and Find Full Text PDF

Succinate dehydrogenase gene (SDHx) mutations increase susceptibility to develop pheochromocytomas/paragangliomas (PHEOs/PGLs). In the present study, we evaluate the performance and clinical applications of (1)H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy-based global metabolomic profiling in a large series of PHEOs/PGLs of different genetic backgrounds. Eighty-seven PHEOs/PGLs (48 sporadic/23 SDHx/7 von Hippel-Lindau/5 REarranged during Transfection/3 neurofibromatosis type 1/1 hypoxia-inducible factor 2α), one SDHD variant of unknown significance, and two Carney triad (CTr)-related tumors were analyzed by HRMAS-NMR spectroscopy.

View Article and Find Full Text PDF

Paragangliomas (PGLs) are frequently associated with germline mutations in genes involved in energy metabolism. The purpose of the present study was to assess whether the tumor metabolomic profile of patients with hereditary and apparently sporadic PGLs enables the distinction of different subtypes of tumors. Twenty-eight unrelated patients with a histological diagnosis of PGLs were included in the present study.

View Article and Find Full Text PDF

In this study, we i) assessed the metabolic profile of the normal adrenal cortex and medulla of adult human subjects by means of (1)H-high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy; ii) compared the biochemical profile of adenoma (Ad), adrenal cortical carcinoma (ACC), and pheochromocytoma (PCC) samples with that of healthy adrenal tissue samples; and iii) investigated the metabolic differences between ACCs and Ads as well as between ACCs and PCCs. Sixty-six tissue samples (13 adrenal cortical tissue, eight medullary tissue, 13 Ad, 12 ACC, and 20 PCC samples) were analyzed. Adrenaline and noradrenaline were undetectable in cortical samples representing the metabolic signature of the tissue derived from neural crest.

View Article and Find Full Text PDF

Purpose: Using the metabolomics by NMR high-resolution magic angle spinning spectroscopy, we assessed the lung metabolome of various animal species in order to identify the animal model that could be substituted to human lung in studies on fresh lung biopsies.

Methods: The experiments were conducted on intact lung biopsy samples of pig, rat, mouse, and human using a Bruker Advance III 500 spectrometer. Thirty-five to 39 metabolites were identified and 23 metabolites were quantified.

View Article and Find Full Text PDF

High-resolution magic angle spinning (HR-MAS) is a nuclear magnetic resonance (NMR) technique that enables the characterization of metabolic phenotypes/metabolite profiles of cells, tissues, and organs, under both normal and pathological conditions, without resorting to time-consuming extraction techniques. In this article, we explore a new domain of application of HR-MAS, namely, reconstructed human epidermis (RHE) and the in situ observation of chemical interactions between skin sensitizers and nucleophilic amino acids. First, the preparation, storage, and analysis of RHE were optimized, and this work demonstrated that HR-MAS NMR was well adapted for investigating RHE with spectra of good quality allowing qualitative as well as quantitative studies of metabolites.

View Article and Find Full Text PDF

Introduction: Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation.

Case Presentation: Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model.

View Article and Find Full Text PDF

Standards are needed to control the quality of the lungs from nonheart-beating donors as potential grafts. This was here assessed using the metabolomics 1H high-resolution magic angle spinning NMR spectroscopy. Selective perfusion of the porcine bilung block was set up 30 min after cardiac arrest with cold Perfadex®.

View Article and Find Full Text PDF

Background: The aim of this preliminary study is to characterize by ¹H high-resolution magic angle spinning NMR spectroscopy (HRMAS) the metabolic content of intact biopsy samples obtained from 12 patients suffering from neuroblastoma (NB).

Procedure: The biochemical NB profile was first compared to normal adrenal medulla. In a second step, the relationship between the tumor metabolic profile and the patients' clinical data was investigated.

View Article and Find Full Text PDF

The development of novel folding oligomers (foldamers) for biological and biomedical applications requires both precise structural information and appropriate methods to detect folding propensity. However, the synthesis and the systematic conformational investigation of large arrays of oligomers to determine the influence of factors, such as chain length, side chains, and surrounding environment, on secondary structure can be quite tedious. Herein, we show for 2.

View Article and Find Full Text PDF

A novel coil, called Z coil, is presented. Its function is to reduce the strong thermal effects produced by rf heating at high frequencies. The results obtained at 500MHz in a 50 microl sample prove that the Z coil can cope with salt concentrations that are one order of magnitude higher than in traditional solenoidal coils.

View Article and Find Full Text PDF

The acquisition time and quality of 1D 13C{1H} spectra can be improved substantially by using a modified driven equilibrium Fourier transform (DEFT) sequence, which is specifically designed to compensate for the effects of B1 inhomogeneity, pulse miscalibration and frequency offsets. The new sequence, called uniform driven equilibrium Fourier transform (UDEFT), returns the carbon magnetization with a high accuracy along its equilibrium position after each transient is complete. Thus, the sequence allows the use of relaxation delays (RD), which are much shorter than the carbon T1 of the molecule, thereby speeding up the acquisition process of 1D 13C{1H} spectra.

View Article and Find Full Text PDF

Two-dimensional (2D) 59Co correlation spectroscopy (COSY)/double-quantum-filtered (DQF)COSY experiments are reported for three tetrahedral mixed-metal clusters HFeCo3(CO)11L with L = PPh3, P(OMe)3, and PCy3 (Cy = cyclohexyl) in which the L-substituted Co center is chemically different from the other two. The 2D 59Co COSY and DQFCOSY NMR spectra of these clusters in solution prove the existence of a scalar coupling constant between the 59Co nuclei. To determine this value for each cluster, 2D 59Co COSY and DQFCOSY NMR spectra have been simulated by numerical density-matrix calculations.

View Article and Find Full Text PDF

NMR spectra of ubiquitin in the presence of bicelles at a concentration of 32% w/v have been recorded at 700 MHz under sample spinning conditions at the magic angle (54.7 degrees ) and at an angle of 45.5 degrees .

View Article and Find Full Text PDF

High-resolution magic angle spinning (HRMAS) has become an extremely versatile tool to study heterogeneous systems. HRMAS relies on magic angle spinning of the sample and on pulse sequences originally developed for liquid state NMR. In most cases the outcome of the experiment is conform to what is expected from high-resolution liquid state NMR spectroscopy.

View Article and Find Full Text PDF

High resolution magic angle spinning (HRMAS) has become an extremely versatile tool to study heterogeneous systems. HRMAS relies on magic angle spinning of the sample to average out to zero magnetic susceptibility differences in the sample and to obtain resonance linewidths approaching those of liquid state NMR. Shimming such samples therefore becomes an important issue.

View Article and Find Full Text PDF

A novel resin called DEUSS (perdeuterated poly(oxyethylene)-based solid support) has been prepared by anionic polymerization of deuterated [D4]ethylene oxide, followed by cross-linking with deuterated epichlorohydrin. DEUSS can be suspended in a wide range of solvents including organic and aqueous solutions, in which it displays a high swelling capacity. As measured by proton HRMAS of the swollen polymer, the signal intensity of the oxyethylene protons is reduced by a factor of 110 relative to the corresponding nondeuterated poly(oxyethylene)poly(oxypropylene) (POEPOP) resin, thus facilitating detailed HRMAS NMR studies of covalently linked molecules.

View Article and Find Full Text PDF

NMR spectra of ubiquitin in the presence of bicelles at a concentration of 25% w/v have been recorded under sample spinning conditions for different angles of rotation. For an axis of rotation equal to the magic angle, the (1)H/(15)N HSQC recorded without any (1)H decoupling in the indirect dimension corresponds to the classical spectrum obtained on a protein in an isotropic solution and allows the measurement of scalar J-couplings (1) J (NH). For an angle of rotation smaller than the magic angle, the bicelles orient with their normal perpendicular to the spinning axis, whereas for an angle of rotation greater than the magic angle the bicelles orient with their normal along the spinning axis.

View Article and Find Full Text PDF