Age-related brain changes affect sleep and are reflected in properties of sleep slow-waves, however, the precise mechanisms behind these changes are still not completely understood. Here, we adapt a previously established whole-brain model relating structural connectivity changes to resting state dynamics, and extend it to a slow-wave sleep brain state. In particular, starting from a representative connectome at the beginning of the aging trajectory, we have gradually reduced the inter-hemispheric connections, and simulated sleep-like slow-wave activity.
View Article and Find Full Text PDFHippocampal cell assemblies coding for past, present and future events form theta-timescale (~100 ms) sequences that represent spatio-temporal episodes. However, the underlying mechanisms remain largely unknown. We recorded hippocampal and entorhinal cortical activity as rats experienced backward travel on a model train.
View Article and Find Full Text PDF