Two series of 3,5-disubstituted isoxazoles (6a-e) and 1,4-disubstituted triazoles (8a-e) derivatives have been synthesized from tyrosol (1), a natural phenolic compound, detected in several natural sources such as olive oil, and well-known by its wide spectrum of biological activities. Copper-catalyzed microwave-assisted 1,3-dipolar cycloaddition reactions between tyrosol-alkyne derivative 2 and two series of aryl nitrile oxides (5a-e) and azides (7a-e) regiospecifically afforded 3,5-disubstituted isoxazoles (6a-e) and 1,4-triazole derivatives (8a-e), respectively in quantitative yields. Synthesized compounds were purified and characterized by spectroscopic means including 1D and 2D NMR techniques and HRMS analysis.
View Article and Find Full Text PDFIn late December 2019, a novel coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), escaped the animal-human interface and emerged as an ongoing global pandemic with severe flu-like illness, commonly known as coronavirus disease 2019 (COVID-19). In this study, a molecular docking study was carried out for seventeen () structural analogues prepared from natural maslinic and oleanolic acids, screened against SARS-CoV-2 main protease. Furthermore, we experimentally validated the virtual data by measuring the half-maximal cytotoxic and inhibitory concentrations of each compound.
View Article and Find Full Text PDFIn this work, 40 analogs with a natural maslinic acid core (from Olea europaea L.) and various aromatic azides were synthesized. A regiospecific, facile and practical synthesis of 1,5-triazolyl derivatives by Ru(II)-catalyzed azide-alkyne cycloaddition (RuAAC), and mono-, bis- and tri-1,4-triazolyl derivatives by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) was described.
View Article and Find Full Text PDFIn this article, we report an effective procedure for the selective isolation of oleanolic acid 1 and maslinic acid 2 (3.4 and 8.5mg/g DW, respectively) from pomace olive (Olea europaea L.
View Article and Find Full Text PDF