Publications by authors named "Karim Baina"

Three-dimensional human pose estimation has made significant advancements through the integration of deep learning techniques. This survey provides a comprehensive review of recent 3D human pose estimation methods, with a focus on monocular images, videos, and multi-view cameras. Our approach stands out through a systematic literature review methodology, ensuring an up-to-date and meticulous overview.

View Article and Find Full Text PDF

Underground mining operations present critical safety hazards due to limited visibility and blind areas, which can lead to collisions between mobile machines and vehicles or persons, causing accidents and fatalities. This paper aims to survey the existing literature on anti-collision systems based on computer vision for pedestrian detection in underground mines, categorize them based on the types of sensors used, and evaluate their effectiveness in deep underground environments. A systematic review of the literature was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to identify relevant research work on anti-collision systems for underground mining.

View Article and Find Full Text PDF

Two-dimensional (2D) multi-person pose estimation and three-dimensional (3D) root-relative pose estimation from a monocular RGB camera have made significant progress recently. Yet, real-world applications require depth estimations and the ability to determine the distances between people in a scene. Therefore, it is necessary to recover the 3D absolute poses of several people.

View Article and Find Full Text PDF

The impact of COVID-19 on socio-economic fronts, public health related aspects and human interactions is undeniable. Amidst the social distancing protocols and the regulations imposed in several countries, citizens took to social media to cope with the emotional turmoil of the pandemic and respond to government issued regulations. In order to uncover the collective emotional response of Moroccan citizens to this pandemic and its effects, we use topic modeling to identify the most dominant COVID-19 related topics of interest amongst Moroccan social media users and sentiment/emotion analysis to gain insights into their reactions to various impactful events.

View Article and Find Full Text PDF