Publications by authors named "Kari T Steffen"

The current treatment method for PCDD/F-contaminated soil, which fulfils the requirements for POP soils, is incineration at high temperature. In this study, we investigated if bioaugmentation with fungal inoculum or treatment with manganese peroxidase (MnP) enzyme preparation could be used instead. The main source of PCDD/F contamination in Finland has been the national production and use of a chlorophenol containing wood preservative, which contained PCDD/Fs as impurities.

View Article and Find Full Text PDF

Agrocybe praecox is a litter-decomposing Basidiomycota species of the order Agaricales, and is frequently found in forests and open woodlands. A. praecox grows in leaf-litter and the upper soil and is able to colonize bark mulch and wood chips.

View Article and Find Full Text PDF

While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose.

View Article and Find Full Text PDF

We investigated the potential of white-rot and litter-decomposing fungi for the treatment of soil and wood from a sawmill area contaminated with aged chlorinated phenols, dibenzo-p-dioxins and furans (PCDD/F). Eight screening assays with emphasis on application of non-sterile conditions were carried out in order to select the strains with capability to withstand indigenous microbes and contamination. Nine fungi were then selected for degrading pentachlorophenol (PCP), and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and mineralizing radiolabelled pentachlorophenol ((14)C-PCP) in non-sterile soil or wood during 15 weeks of incubation.

View Article and Find Full Text PDF

Catalytic and physicochemical properties of representative fungal dye-decolorizing peroxidases (DyPs) of wood- (WRF) and litter-decomposing white-rot fungi (LDF) are summarized and compared, including one recombinant Mycetinis scorodonius DyP (rMscDyP; LDF), the wild-type Auricularia auricula-judae DyP (AauDyP; WRF), and two new DyPs secreted by the jelly fungi Exidia glandulosa (EglDyP; WRF) and Mycena epipterygia (MepDyP; LDF). Homogeneous preparations of these DyPs were obtained after different steps of fast protein liquid chromatography, and they increase the total number of characterized fungal DyP proteins to eight. The peptide sequences of AauDyP, MepDyP, and EglDyP showed highest homologies (52-56%) to the DyPs of M.

View Article and Find Full Text PDF

Due to production of lignocellulose-degrading enzymes, saprotrophic litter-decomposing basidiomycetes can significantly contribute to the turnover of soil organic matter. The production of lignin and polysaccharide-degrading enzymes and changes in the chemical composition of litter was studied with Marasmius quercophilus, Mycena inclinata and Pholiota lenta, three basidiomycete species typical of oak (Quercus petraea) forests. Within 12weeks of incubation, M.

View Article and Find Full Text PDF

With the focus on alternative microbes for soil-bioremediation, 18 species of litter-decomposing basidiomycetous fungi were screened for their ability to grow on different lignocellulosic substrates including straw, flax and pine bark as well as to produce ligninolytic enzymes, namely laccase and manganese peroxidase. Following characteristics have been chosen as criteria for the strain selection: (i) the ability to grow at least on one of the mentioned materials, (ii) production of either of the ligninolytic enzymes and (iii) the ability to invade non-sterile soil. As the result, eight species were selected for a bioremediation experiment with an artificially contaminated soil (total polycyclic aromatic hydrocarbon (PAH) concentration 250 mg/kg soil).

View Article and Find Full Text PDF

Lignin mineralization activity of three basidiomycetous litter-decomposing fungi (LDF) was studied with humus layer samples taken from a boreal forest soil. The total Pb concentration in the samples was 32,000 mg kg(-1) and water soluble Pb 67 mg kg(-1). Synthetic lignin mineralization by Collybia dryophila and Clitocybe (Lepista) nebularis was strongly inhibited, whereas Stropharia coronilla was more tolerant to Pb stress in soil and liquid cultures.

View Article and Find Full Text PDF

Culture liquids of the litter-decomposing basidiomycete Stropharia coronilla showed pro-oxidant activity promoting the peroxidation of linoleic acid. This activity depended on the presence of manganese peroxidase (MnP) in the fungal culture. Pro-oxidant activity maxima coincided with maximum MnP activities during the separation of extracellular proteins by anion-exchange chromatography.

View Article and Find Full Text PDF

The soil mold Paecilomyces inflatus is capable of modifying and partially mineralizing synthetic and natural humic acids (HAs) in compost environments. HA degradation studies using a synthetic HA (14C-HA) in autoclaved compost microcosms showed that, after 12 weeks of cultivation, P. inflatus mineralized approximately 5% of the 14C-labeled HA to 14CO2, while 6% of the 14C-HA was converted into 14C-labeled water-soluble fragments (fulvic-acid-like fraction).

View Article and Find Full Text PDF

The litter-decomposing basidiomycete Stropharia coronilla, which preferably colonizes grasslands, was found to be capable of metabolizing and mineralizing benzo[a]pyrene (BaP) in liquid culture. Manganese(II) ions (Mn(2+)) supplied at a concentration of 200 micro M stimulated considerably both the conversion and the mineralization of BaP; the fungus metabolized and mineralized about four and twelve times, respectively, more of the BaP in the presence of supplemental Mn(2+) than in the basal medium. This stimulating effect could be attributed to the ligninolytic enzyme manganese peroxidase (MnP), whose activity increased after the addition of Mn(2+).

View Article and Find Full Text PDF

The basidiomycete Collybia dryophila K209, which colonizes forest soil, was found to decompose a natural humic acid isolated from pine-forest litter (LHA) and a synthetic (14)C-labeled humic acid ((14)C-HA) prepared from [U-(14)C]catechol in liquid culture. Degradation resulted in the formation of polar, lower-molecular-mass fulvic acid (FA) and carbon dioxide. HA decomposition was considerably enhanced in the presence of Mn(2+) (200 microM), leading to 75% conversion of LHA and 50% mineralization of (14)C-HA (compared to 60% and 20%, respectively, in the absence of Mn(2+)).

View Article and Find Full Text PDF