Publications by authors named "Kari Nejak-Bowen"

The liver has a critical role in regulating host metabolism, immunity, detoxification, and homeostasis. Proper liver function is essential for host health, and dysregulation of hepatic signaling pathways can lead to the onset of disease. The Wnt/β-catenin signaling pathway is an important regulator of liver homeostasis and function.

View Article and Find Full Text PDF

Background: Cholestasis is an intractable liver disorder that results from impaired bile flow. We have previously shown that the Wnt/β-catenin signaling pathway regulates the progression of cholestatic liver disease through multiple mechanisms, including bile acid metabolism and hepatocyte proliferation. To further explore the impact of these functions during intrahepatic cholestasis, we exposed mice to a xenobiotic that causes selective biliary injury.

View Article and Find Full Text PDF
Article Synopsis
  • - Hepatic porphyrias are metabolic disorders where excess porphyrin precursors accumulate in the liver, leading to neurological symptoms and skin sensitivity, with some cases resulting in severe acute neurovisceral attacks.
  • - This review focuses on types of acute hepatic porphyrias (like acute intermittent porphyria and hereditary coproporphyria) and those with skin symptoms (like porphyria cutanea tarda), addressing prevalence, symptoms, and treatments.
  • - It also explores new treatment options, such as gene therapy using adeno-associated vectors and innovative chaperone therapies like lipid nanoparticles and small interfering RNA-based treatments.
View Article and Find Full Text PDF

The porphyrias are a group of metabolic disorders that are caused by defects in heme biosynthesis pathway enzymes. The result is accumulation of heme precursors, which can cause neurovisceral and/or cutaneous photosensitivity. Liver is commonly either a source or target of excess porphyrins, and porphyria-associated hepatic dysfunction ranges from minor abnormalities to liver failure.

View Article and Find Full Text PDF

Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression.

View Article and Find Full Text PDF

Background & Aims: β-Catenin, the effector molecule of the Wnt signaling pathway, has been shown to play a crucial role in bile acid homeostasis through direct inhibition of farnesoid X receptor (FXR), which has pleiotropic effects on bile acid homeostasis. We hypothesize that simultaneous suppression of β-catenin signaling and activation of FXR in a mouse model of cholestasis will reduce injury and biliary fibrosis through inhibition of bile acid synthesis.

Methods: To induce cholestasis, we performed bile duct ligation (BDL) on wild-type male mice.

View Article and Find Full Text PDF

Background: We previously showed that loss of yes-associated protein 1 (YAP) in early liver development (YAPKO) leads to an Alagille syndrome-like phenotype, with failure of intrahepatic bile duct development, severe cholestasis, and chronic hepatocyte adaptations to reduce liver injury. TAZ, a paralog of YAP, was significantly upregulated in YAPKO hepatocytes and interacted with TEA domain family member (TEAD) transcription factors, suggesting possible compensatory activity.

Methods: We deleted both Yap1 and Wwtr1 (which encodes TAZ) during early liver development using the Foxa3 promoter to drive Cre expression, similar to YAPKO mice, resulting in YAP/TAZ double knockout (DKO) and YAPKO with TAZ heterozygosity (YAPKO TAZHET).

View Article and Find Full Text PDF

Wnt-β-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.

View Article and Find Full Text PDF

Background & Aims: Intrahepatic cholangiocarcinoma (ICC) is a devastating liver cancer with extremely high intra- and inter-tumoral molecular heterogeneity, partly due to its diverse cellular origins. We investigated clinical relevance and the molecular mechanisms underlying hepatocyte (HC)-driven ICC development.

Methods: Expression of ICC driver genes in human diseased livers at risk for ICC development were examined.

View Article and Find Full Text PDF

Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury.

View Article and Find Full Text PDF

Congenital hepatic fibrosis (CHF) is a developmental liver disease that is caused by mutations in genes that encode ciliary proteins and is characterized by bile duct dysplasia and portal fibrosis. Recent work has demonstrated that mutations in ANKS6 can cause CHF due to its role in bile duct development. Here, we report a novel ANKS6 mutation, which was identified in an infant presenting with neonatal jaundice due to underlying biliary abnormalities and liver fibrosis.

View Article and Find Full Text PDF

Primary sclerosing cholangitis (PSC) is a rare, chronic, cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts. We have previously demonstrated the importance of Wnt/β-catenin signaling in mouse models of PSC. In this study, we wished to determine the clinical relevance of β-catenin localization in patient samples.

View Article and Find Full Text PDF

Metabolic heterogeneity or functional zonation is a key characteristic of the liver that allows different metabolic pathways to be spatially regulated within the hepatic system and together contribute to whole body homeostasis. These metabolic pathways are segregated along the portocentral axis of the liver lobule into three hepatic zones: periportal, intermediate or midzonal, and perivenous. The liver performs complementary or opposing metabolic functions within different hepatic zones while synergistic functions are regulated by overlapping zones, thereby maintaining the overall physiological stability.

View Article and Find Full Text PDF

Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in liver diseases including cystic fibrosis (CF), and associated with inflammation and fibrosis, without complete understanding of underlying mechanism. Using two different genetic mouse knockouts of β-catenin, one with β-catenin loss is hepatocytes and BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-supplemented diet. KO2 show gradual liver repopulation with BEC-derived β-catenin-positive hepatocytes and resolution of injury.

View Article and Find Full Text PDF

We previously identified an up-regulation of specific Wnt proteins in the cholangiocyte compartment during cholestatic liver injury and found that mice lacking Wnt secretion from hepatocytes and cholangiocytes showed fewer proliferating cholangiocytes and high mortality in response to a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a murine model of primary sclerosing cholangitis. In vitro studies demonstrated that Wnt7b, one of the Wnts up-regulated during cholestasis, induces proliferation of cholangiocytes in an autocrine manner and increases secretion of proinflammatory cytokines. We hypothesized that loss of Wnt7b may exacerbate some of the complications of cholangiopathies by decreasing the ability of bile ducts to induce repair.

View Article and Find Full Text PDF

Yes-associated protein 1 (YAP1) regulates cell plasticity during liver injury, regeneration, and cancer, but its role in liver development is unknown. We detect YAP1 activity in biliary cells and in cells at the hepatobiliary bifurcation in single-cell RNA sequencing analysis of developing livers. Deletion of Yap1 in hepatoblasts does not impair Notch-driven SOX9+ ductal plate formation but does prevent the formation of the abutting second layer of SOX9+ ductal cells, blocking the formation of a patent intrahepatic biliary tree.

View Article and Find Full Text PDF

Hepatocytes are highly polarized epithelia. Loss of hepatocyte polarity is associated with various liver diseases, including cholestasis. However, the molecular underpinnings of hepatocyte polarization remain poorly understood.

View Article and Find Full Text PDF

ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood.

View Article and Find Full Text PDF

Chronic cholestasis results from bile secretory defects or impaired bile flow with few effective medical therapies available. Thyroid hormone triiodothyronine and synthetic thyroid hormone receptor agonists, such as sobetirome (GC-1), are known to impact lipid and bile acid (BA) metabolism and induce hepatocyte proliferation downstream of Wnt/β-catenin signaling after surgical resection; however, these drugs have yet to be studied as potential therapeutics for cholestatic liver disease. Herein, GC-1 was administered to ATP binding cassette subfamily B member 4 (Abcb4; Mdr2) knockout (KO) mice, a sclerosing cholangitis model.

View Article and Find Full Text PDF
Article Synopsis
  • Sickle cell disease (SCD) can lead to hepatic crises, but the exact molecular mechanisms of liver injury in SCD are not well understood, prompting research using humanized mouse models and patient blood samples.* -
  • The study found that SCD mice showed liver issues like sinusoidal ischemia and increased liver size due to activation of NF-κB, which disrupted farnesoid X receptor (FXR) function and impaired bile transport and metabolism, causing bile buildup in the liver.* -
  • By blocking NF-κB activation, researchers were able to restore FXR signaling and reduce liver damage in SCD mice, highlighting a potential target for treatments of liver-related complications in sickle cell disease.*
View Article and Find Full Text PDF

We have recently shown that loss of β-catenin prevents the development of cholestatic liver injury and fibrosis after bile duct ligation (BDL) due to loss of the inhibitory farnesoid X receptor (FXR)/β-catenin complex, which results in decreased hepatic bile acids (BAs) through activation of FXR. To further understand the role of Wnt/β-catenin signaling in regulating BA metabolism and cholestasis, we performed BDL on mice in which hepatocyte Wnt signaling is deficient but β-catenin is intact (low-density lipoprotein receptor-related protein [LRP]5/6 knockout [DKO]) as well as mice that have enhanced hepatocyte β-catenin expression (serine 45 mutated to aspartic acid [S45D] transgenic [TG] mice). Despite decreased biliary injury after BDL, hepatic injury, fibrosis, and inflammation were comparable in DKO and wild-type (WT) mice.

View Article and Find Full Text PDF

Background And Aims: The Wnt/β-catenin signaling pathway has a well-described role in liver pathobiology. Its suppression was recently shown to decrease bile acid (BA) synthesis, thus preventing the development of cholestatic liver injury and fibrosis after bile duct ligation (BDL).

Approach And Results: To generalize these observations, we suppressed β-catenin in Mdr2 knockout (KO) mice, which develop sclerosing cholangitis due to regurgitation of BA from leaky ducts.

View Article and Find Full Text PDF

Cholangiopathies are chronic, progressive diseases of the biliary tree, and can be either acquired or genetic. The primary target is the cholangiocyte (CC), the cell type lining the bile duct that is responsible for bile modification and transport. Despite advances in our understanding and diagnosis of these diseases in recent years, there are no proven therapeutic treatments for the majority of the cholangiopathies, and liver transplantation is the only life-extending treatment option for patients with end-stage cholestatic liver disease.

View Article and Find Full Text PDF