Publications by authors named "Kari M Finstad"

Tropical forests account for over 50% of the global terrestrial carbon sink, but climate change threatens to alter the carbon balance of these ecosystems. We show that warming and drying of tropical forest soils may increase soil carbon vulnerability, by increasing degradation of older carbon. In situ whole-profile heating by 4 °C and 50% throughfall exclusion each increased the average radiocarbon age of soil CO efflux by ~2-3 years, but the mechanisms underlying this shift differed.

View Article and Find Full Text PDF

Although once thought to be devoid of biology, recent studies have identified salt deposits as oases for life in the hyperarid Atacama Desert. To examine spatial patterns of microbial species and key nutrient sources, we genomically characterized 26 salt crusts from three sites along a fog gradient. The communities are dominated by a large variety of Halobacteriales and Bacteroidetes, plus a few algal and Cyanobacterial species.

View Article and Find Full Text PDF

The tree of life is one of the most important organizing principles in biology(1). Gene surveys suggest the existence of an enormous number of branches(2), but even an approximation of the full scale of the tree has remained elusive. Recent depictions of the tree of life have focused either on the nature of deep evolutionary relationships(3-5) or on the known, well-classified diversity of life with an emphasis on eukaryotes(6).

View Article and Find Full Text PDF

Rationale: Information about the sulfur stable isotope composition (δ(34) S value) of organic materials and sediments, in addition to their nitrogen (δ(15) N value) and carbon (δ(13) C value) stable isotope compositions, can provide insights into mechanisms and processes in different areas of biological and geological research. The quantification of δ(34) S values has traditionally required an additional and often more difficult analytical procedure than NC dual analysis. Here, we report on the development of a high-throughput method that simultaneously measures the elemental and isotopic compositions of N, C and S in a single sample, and over a wide range of sample sizes and C/N and C/S ratios.

View Article and Find Full Text PDF