Publications by authors named "Kari L Price"

How canonical cytokinesis is altered during germ cell division to produce stable intercellular bridges, called "ring canals," is poorly understood. Here, using time-lapse imaging in Drosophila, we observe that ring canal formation occurs through extensive remodeling of the germ cell midbody, a structure classically associated with its function in recruiting abscission-regulating proteins in complete cytokinesis. Germ cell midbody cores reorganize and join the midbody ring rather than being discarded, and this transition is accompanied by changes in centralspindlin dynamics.

View Article and Find Full Text PDF

Many specialized cells use unconventional strategies of cytoskeletal control. Nematode spermatocytes discard their actin and tubulin following meiosis, and instead employ the regulated assembly/disassembly of the Major Sperm Protein (MSP) to drive sperm motility. However, prior to the meiotic divisions, MSP is sequestered through its assembly into paracrystalline structures called fibrous bodies (FBs).

View Article and Find Full Text PDF

Animal germ cells communicate directly with each other during gametogenesis through intercellular bridges, often called ring canals (RCs), that form as a consequence of incomplete cytokinesis during cell division. Developing germ cells in have an additional specialized organelle connecting the cells called the fusome. Ring canals and the fusome are required for fertility in females, but little is known about their roles during spermatogenesis.

View Article and Find Full Text PDF

The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles.

View Article and Find Full Text PDF

Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation.

View Article and Find Full Text PDF