Publications by authors named "Kari J Airenne"

Gene therapy would greatly benefit from a method to regulate therapeutic gene expression temporally. Riboswitches are small RNA elements that have been studied for their potential use in turning transgene expression on or off by ligand binding. We compared several tetracycline and toyocamycin-inducible ON-riboswitches for a drug responsive transgene expression.

View Article and Find Full Text PDF

Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined.

View Article and Find Full Text PDF

With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame.

View Article and Find Full Text PDF

Aims: Slit2 is a possible modulator of VEGF-induced angiogenesis, but its effects have not been tested on large animal models. We studied the effect of Slit2 on therapeutic angiogenesis induced by VEGF receptor 2 (VEGFR2) ligands Vammin and VEGF-D(ΔNΔC) in vivo in rabbit skeletal muscles. The Slit2 target genes were also studied by RNA sequencing in endothelial cells.

View Article and Find Full Text PDF

Background: A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy.

View Article and Find Full Text PDF

Background: Vascular endothelial growth factors (VEGFs) are potential therapeutic agents for treatment of ischemic diseases. Their angiogenic effects are mainly mediated through VEGF receptor 2 (VEGFR2).

Methods: Receptor binding, signaling, and biological efficacy of several VEGFR2 ligands were compared to determine their characteristics regarding angiogenic activity and vascular permeability.

View Article and Find Full Text PDF

Baculoviruses are insect-specific viruses commonly found in nature. They are not able to replicate in mammalian cells but can transduce them when equipped with an appropriate mammalian cell active expression cassette. Although the viruses have been studied in several types of mammalian cells from different origins, the receptor that baculovirus uses to enter or interact with mammalian cells has not yet been identified.

View Article and Find Full Text PDF

Some cell types are more susceptible to viral gene transfer or virus infection than others, irrespective of the number of viral receptors or virus binding efficacy on their surfaces. In order to characterize the cell-line-specific features contributing to efficient virus entry, we studied two cell lines (Ea.hy926 and MG-63) that are nearly nonpermissive to insect-specific baculovirus (BV) and the human enterovirus echovirus 1 (EV1) and compared their characteristics with those of a highly permissive (HepG2) cell line.

View Article and Find Full Text PDF

Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors.

View Article and Find Full Text PDF

Integrating viral vectors are efficient gene transfer tools, but their integration patterns have been associated with genotoxicity and oncogenicity. The recent development of highly specific designer nucleases has enabled target DNA modification and site-specific gene insertion at desired genomic loci. However, a lack of consensus exists regarding a perfect genomic safe harbour (GSH) that would allow transgenes to be stably and reliably expressed without adversely affecting endogenous gene structure and function.

View Article and Find Full Text PDF

Background: A considerable percentage of tumors are not amenable to surgery. We have designed a simple and powerful targeting system that offers an alternative option for the multi-component pre-targeting strategies used clinically. This targeting system can be used for any type of solid tumors independent of the tumor type, thereby omitting the need to engineer unique antibodies for each specific application or tumour type.

View Article and Find Full Text PDF

Far red emitting persistent luminescence nanoparticles (PLNP) were synthesized and functionalized with biotin to study their targeting ability toward biotin-binding proteins. First, the interaction of biotin-decorated PLNP with streptavidin, immobilized on a plate, was shown to be highly dependent on the presence of a PEG spacer between the surface of the nanoparticles and the biotin ligand. Second, interaction between biotin-PEG-PLNP and free neutravidin in solution was confirmed by fluorescence microscopy.

View Article and Find Full Text PDF

Background: Occluded arteries and ischemic tissues cannot always be treated by angioplasty, stenting or by-pass-surgery. Under such circumstances, viral gene therapy may be useful in inducing increased blood supply to ischemic area. There is evidence of improved blood flow in ischemic skeletal muscle and myocardium in both animal and human studies using adenoviral vascular endothelial growth factor (VEGF) gene therapy.

View Article and Find Full Text PDF

Serum inactivation of baculovirus vectors is a significant barrier to the development of these highly efficient vectors for therapeutic gene delivery. In this review we will describe the efforts taken to avoid complement attack by passive or active measures. Evidently good targets for baculovirus-mediated gene delivery include immunoprivileged tissues, such as eye, brain and testis.

View Article and Find Full Text PDF

Baculoviruses have proven capacity for the production of recombinant proteins including virus-like particles and as viral vectors. Recent progress in preclinical studies suggest that baculoviruses have potential as new vectors for gene therapy but so far no clinical trials have been performed. To date, no specific guidelines for the use of baculoviruses as human gene therapy vectors exist but researchers can utilize existing guidelines made for other biological products.

View Article and Find Full Text PDF

Baculovirus expression vector system (BEVS) is well known as a feasible and safe technology to produce recombinant (re-)proteins in a eukaryotic milieu of insect cells. However, its proven power in gene delivery and gene therapy is still poorly recognized. The basis of BEVS lies in large enveloped DNA viruses derived from insects, the prototype virus being Autographa californica multiple nucleopolyhedrovirus (AcMNPV).

View Article and Find Full Text PDF

Baculoviruses are safe and high-capacity vectors for gene delivery which have matured from the initial successful experiments performed in liver cells into convenient tools to transduce almost any cell from any origin in vitro and ex vivo. This is a result of 15 years of intensive vector development as well as studies performed in vertebrate cells to reveal important factors affecting the transduction efficacy. Now, at the stage when the first evidence of meaningful use of baculoviruses for therapeutic applications has been reported, there is no doubt that the technology will meet the expectations as highly useful platform for many applications of gene delivery.

View Article and Find Full Text PDF

One of the major obstacles in the use of baculovirus vectors for in vivo gene transfer is the virus inactivation by serum complement. In this study, we investigated the effect of decay-accelerating factor (DAF), factor H (FH)-like protein-1 (FHL-1), C4b-binding protein (C4BP), and membrane cofactor protein (MCP) on protection of baculovirus vectors from the complement-mediated inactivation. Complement regulatory proteins were displayed on baculovirus surface as fusions to membrane anchor of the vesicular stomatitis virus-G (VSV-G) protein.

View Article and Find Full Text PDF

The budded form of baculovirus Autographa californica multiple nucleopolyhedrovirus is used widely in biotechnological applications. In this study, we observed the morphology of baculovirus in nanometer scale by atomic force microscopy. Additionally, the correlation between transduction efficiency and virus stock storage time was evaluated.

View Article and Find Full Text PDF

Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines.

View Article and Find Full Text PDF

One of the main objectives of cancer therapy is to enhance the effectiveness of the drug by concentrating it at the target site and to minimize the undesired side effects to nontarget cells. We have previously constructed a fusion protein, Lodavin, consisting of avidin and the endocytotic part of the low-density lipoprotein receptor, and demonstrated its applicability to transient drug targeting in vivo. In this study we produced a lentiviral vector expressing this fusion protein and evaluated its safety and efficacy.

View Article and Find Full Text PDF

Background: Baculovirus expression vector system (BEVS) has become a standard in recombinant protein production and virus-like particle preparation for numerous applications.

Findings: We describe here protocols which adapt baculovirus generation into 96-well format.

Conclusion: The established methodology allows simple baculovirus generation, fast virus titering within 18 h and efficient recombinant protein production in a high-throughput format.

View Article and Find Full Text PDF