Publications by authors named "Kari Irvine"

Melanocyte differentiation Ags, including tyrosinase-related protein (TRP) 1, are relevant to both autoimmune skin depigmentation (vitiligo) and tumor immunity, because they are expressed by both benign melanocytes and many malignant melanomas. Melanoma patients generate CD4(+) T cells that specifically recognize these proteins. TRP1 contains internal disulfide bonds and is presented by MHC class II molecules.

View Article and Find Full Text PDF

Despite the longstanding appreciation of communication between the nervous and the immune systems, the nature and significance of these interactions to immunity remain enigmatic. Here, we show that 6-hydroxydopamine-mediated ablation of the mouse peripheral sympathetic nervous system increases primary CD8(+) T cell responses to viral and cellular antigens presented by direct priming or cross-priming. The sympathetic nervous system also suppresses antiviral CD4(+) T cell responses, but this is not required for suppressing CD8(+) T cell responses.

View Article and Find Full Text PDF

Background: The licensed smallpox vaccine, comprised of infectious vaccinia virus, has associated adverse effects, particularly for immunocompromised individuals. Therefore, safer DNA and protein vaccines are being investigated. The L1 protein, a component of the mature virion membrane that is conserved in all sequenced poxviruses, is required for vaccinia virus entry into host cells and is a target for neutralizing antibody.

View Article and Find Full Text PDF

The action of TdT on mouse TCR genes accounts for approximately 90% of T cell repertoire diversity. We report that in TdT-/- mice, total T(CD8+) responses to influenza and vaccinia viruses are reduced by approximately 30% relative to wild-type mice. We find that T(CD8+) responses to three subdominant influenza virus determinants are reduced to background values in TdT-/- mice while responses to three immunodominant determinants undergo a major reshuffling.

View Article and Find Full Text PDF

CD4+ T cells can differentiate into multiple effector subsets, but the potential roles of these subsets in anti-tumor immunity have not been fully explored. Seeking to study the impact of CD4+ T cell polarization on tumor rejection in a model mimicking human disease, we generated a new MHC class II-restricted, T-cell receptor (TCR) transgenic mouse model in which CD4+ T cells recognize a novel epitope in tyrosinase-related protein 1 (TRP-1), an antigen expressed by normal melanocytes and B16 murine melanoma. Cells could be robustly polarized into Th0, Th1, and Th17 subtypes in vitro, as evidenced by cytokine, chemokine, and adhesion molecule profiles and by surface markers, suggesting the potential for differential effector function in vivo.

View Article and Find Full Text PDF

Recent studies suggest that immunotherapy targeting specific tumor-associated antigens (TAAs) may be beneficial in cancer patients. However, most of these TAAs are tumor type specific and heterogeneous among patients, thus limiting their applications. Here, we describe the de novo induction of a cancer/testis antigen (CTA) for immunotherapy of tumors of various histologies.

View Article and Find Full Text PDF

CD8(+) T-lymphocytes (T(CD8+)) perform a critical role in immunity against tumors and virus infections. A central feature of T(CD8+) immune responses is immunodominance: the observation that T(CD8+) responses consist of a limited collection of specificities with a structured hierarchy. These immunodominance hierarchies result from a complex combination of factors.

View Article and Find Full Text PDF

In virus models explored in detail in mice, CTL typically focus on a few immunodominant determinants. In this study we use a multipronged approach to understand the diversity of CTL responses to vaccinia virus, a prototypic poxvirus with a genome approximately 20-fold larger than that of the model RNA viruses typically studied in mice. Based on predictive computational algorithms for peptide binding to HLA supertypes, we synthesized a panel of 2889 peptides to begin to create an immunomic map of human CTL responses to poxviruses.

View Article and Find Full Text PDF

The large size of poxvirus genomes has stymied attempts to identify determinants recognized by CD8+ T cells and greatly impeded development of mouse smallpox vaccination models. Here, we use a vaccinia virus (VACV) expression library containing each of the predicted 258 open reading frames to identify five peptide determinants that account for approximately half of the VACV-specific CD8+ T cell response in C57BL/6 mice. We show that the primary immunodominance hierarchy is greatly affected by the route of VACV infection and the poxvirus strain used.

View Article and Find Full Text PDF