Publications by authors named "Kargl G"

Gas flow through layers of porous materials plays a crucial role in technical applications, geology, petrochemistry, and space sciences (e.g., fuel cells, catalysis, shale gas production, and outgassing of volatiles from comets).

View Article and Find Full Text PDF

The Comet Physics Laboratory (CoPhyLab) is an international research program to study the physical properties of cometary analog materials under simulated space conditions. The project is dedicated to studying, with the help of multiple instruments and the different expertise and background from the different partners, the physics of comets, including the processes inside cometary nuclei, the activity leading to the ejection of dust and gas, and the sub-surface and surface evolution of cometary nuclei when exposed to solar illumination. CoPhyLab will provide essential information on the formation and evolution of comets and insights into the origins of primitive Solar System bodies.

View Article and Find Full Text PDF

Extracorporeal membrane oxygenation (ECMO) is often used in the management of COVID-19-related severe respiratory failure. We report the first case of a patient with COVID-19-related ARDS on ECMO support who developed symptoms of heparin-induced thrombocytopenia (HIT) in the absence of heparin therapy. A low platelet count of 61 G/L was accompanied by the presence of circulating HIT antibodies 12 days after ECMO initiation.

View Article and Find Full Text PDF

The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko, was delivered to the cometary surface in November 2014. Here we report the precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, based on engineering data in conjunction with operational instrument data. These data also provide information on the mechanical properties (strength and layering) of the comet surface.

View Article and Find Full Text PDF

Thermal and mechanical material properties determine comet evolution and even solar system formation because comets are considered remnant volatile-rich planetesimals. Using data from the Multipurpose Sensors for Surface and Sub-Surface Science (MUPUS) instrument package gathered at the Philae landing site Abydos on comet 67P/Churyumov-Gerasimenko, we found the diurnal temperature to vary between 90 and 130 K. The surface emissivity was 0.

View Article and Find Full Text PDF

The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload.

View Article and Find Full Text PDF

Particle-loaded monoliths containing a polymethacrylamide backbone were prepared by suspending a silica-based chiral phase in the mixture of the monomers followed by in-situ polymerization in the capillary. As chiral selector l-4-hydroxyproline chemically bonded to 3 microm silica particles was used following the separation principle of ligand-exchange. Electrolytes containing Cu(II) ions were used.

View Article and Find Full Text PDF

The surface of Saturn's largest satellite--Titan--is largely obscured by an optically thick atmospheric haze, and so its nature has been the subject of considerable speculation and discussion. The Huygens probe entered Titan's atmosphere on 14 January 2005 and descended to the surface using a parachute system. Here we report measurements made just above and on the surface of Titan by the Huygens Surface Science Package.

View Article and Find Full Text PDF