We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (NH(CH)Se), which occupies both the X and A sites in the prototypical ABX perovskite. The new organoselenide-halide perovskites: (SeCYS)PbX (X=Cl, Br) expand upon the recently discovered organosulfide-halide perovskites. Single-crystal X-ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide-halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid-state Se and Pb NMR, complemented by theoretical simulations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
In metal-organic frameworks (MOFs) the interplay between the dynamics of individual components and how these are constrained by the extended lattice can yield unusual emergent phenomena. For the archetypal Zr-MOF, UiO-66, we explore the cooperative dynamics of a Zr-node transformation that gives rise to negative thermal expansion (NTE). Using synchrotron X-ray scattering, with powder diffraction and pair distribution function (PDF) analyses, we identify lattice hysteresis and a thermal ramp-rate-dependence of the thermal expansion.
View Article and Find Full Text PDFPorous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order.
View Article and Find Full Text PDFHydrothermal methods are widely used to synthesize functional inorganic materials. The interplay between the reactive species, solution chemistry, and the nanoscale product makes it challenging to control the reaction pathway to achieve a uniform product. Here, we resolve the heterogeneity that arises during hydrothermal synthesis across different length scales.
View Article and Find Full Text PDFSingle-site catalysts (SSCs) achieve a high catalytic performance through atomically dispersed active sites. A challenge facing the development of SSCs is aggregation of active catalytic species. Reducing the loading of these sites to very low levels is a common strategy to mitigate aggregation and sintering; however, this limits the tools that can be used to characterize the SSCs.
View Article and Find Full Text PDFThe local environment of a metal active site plays an important role in affecting the catalytic activity and selectivity. In recent studies, tailoring the behavior of a molybdenum-based active site modulation of the first coordination sphere has led to improved thioanisole oxidation performance, but disentangling electronic effects from steric influences that arise from these modifications is nontrivial, especially in heterogeneous systems. To this end, the tunability of metal-organic frameworks (MOFs) makes them promising scaffolds for controlling the coordination sphere of a heterogeneous, catalytically active metal site while offering additional attractive features such as crystallinity and high porosity.
View Article and Find Full Text PDFCALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO is saturated with moisture, such as postcombustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyltriazolate linkers, are presented.
View Article and Find Full Text PDFDespite global efforts to reduce carbon dioxide (CO) emissions, continued industrialization threatens to exacerbate climate change. This work investigates methods to capture CO, with a focus on the SIFSIX-3-Ni metal-organic framework (MOF) as a direct air capture (DAC) sorbent. SIFSIX-3-Ni exhibits promising CO adsorption properties but suffers from degradation processes under accelerated aging, which are akin to column regeneration conditions.
View Article and Find Full Text PDFThe synthesis of complex oxides at low temperatures brings forward aspects of chemistry not typically considered. This study focuses on perovskite LaMnO, which is of interest for its correlated electronic behavior tied to the oxidation state and thus the spin configuration of manganese. Traditional equilibrium synthesis of these materials typically requires synthesis reaction temperatures in excess of 1000 °C, followed by subsequent annealing steps at lower temperatures and different (O) conditions to manipulate the oxygen content postsynthesis (e.
View Article and Find Full Text PDFSolid-state syntheses are generally regarded as being slow, limited by transport, and, as such, are often only stopped to check the products after many hours at high temperature. Here, using a custom-designed reactor to rapidly initiate solid-state syntheses, we are able to capture the earliest stages of a reaction using X-ray scattering. For the reaction of TiO and LiCO to form spinel lithium titanate (LiTiO)─an anode material for fast-charging applications─we capture two distinct kinetic regimes, including fast initial kinetics in the first seconds-minutes of the reaction that account for significant product formation.
View Article and Find Full Text PDFWe report the synthesis of a series of pseudo-1D coordination polymer (CP) materials with the formula FeCoBTT (BTT = 1,3,5-benzenetrithiolate). These materials were structurally characterized by PXRD Rietveld, EXAFS, and PDF analyses, revealing that the CP superstructure enables a continuous and isomorphous alloy between the two homometallic compounds. Lower Fe loadings exhibit emergent spin glass magnetic behavior, such as memory effects and composition-dependent spin glass response time constants ranging from 6.
View Article and Find Full Text PDFChemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors.
View Article and Find Full Text PDFPolyoxometalates (POMs) featuring 7, 12, 18, or more redox-accessible transition metal ions are ubiquitous as selective catalysts, especially for oxidation reactions. The corresponding synthetic and catalytic chemistry of stable, discrete, capping-ligand-free polythiometalates (PTMs), which could be especially attractive for reduction reactions, is much less well developed. Among the challenges are the propensity of PTMs to agglomerate and the tendency for agglomeration to block reactant access of catalyst active sites.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) that display photoredox activity are attractive materials for sustainable photocatalysis. The ability to tune both their pore sizes and electronic structures based solely on the choice of the building blocks makes them amenable for systematic studies based on physical organic and reticular chemistry principles with high degrees of synthetic control. Here, we present a library of eleven isoreticular and multivariate (MTV) photoredox-active MOFs, UCFMOF-, and UCFMTV--% with a formula TiO[], where the links are linear oligo--arylene dicarboxylates with number of -arylene rings and mol% of multivariate links containing electron-donating groups (EDGs).
View Article and Find Full Text PDFHeterogeneous catalysts exhibit significant changes in composition due to the influence of operating conditions, and these compositional changes can have dramatic effects on catalytic performance. For traditional bulk metal heterogeneous catalysts, relationships between composition and catalytic operating conditions are well documented. However, the influence of operating conditions on the compositions of single-site heterogeneous catalysts remains largely unresolved.
View Article and Find Full Text PDFChemically functionalized series of metal-organic frameworks (MOFs), with subtle differences in local structure but divergent properties, provide a valuable opportunity to explore how local chemistry can be coupled to long-range structure and functionality. Using synchrotron X-ray total scattering, with powder diffraction and pair distribution function (PDF) analysis, we investigate the temperature dependence of the local- and long-range structure of MOFs based on NU-1000, in which ZrO nodes are coordinated by different capping ligands (HO/OH, Cl ions, formate, acetylacetonate, and hexafluoroacetylacetonate). We show that the local distortion of the Zr nodes depends on the lability of the ligand and contributes to a negative thermal expansion (NTE) of the extended framework.
View Article and Find Full Text PDFAlthough sulfide perovskites usually require high-temperature syntheses, we demonstrate that organosulfides can be used in the milder syntheses of halide perovskites. The zwitterionic organosulfide, cysteamine (CYS; NH(CH)S), serves as both the X site and A site in the ABX halide perovskites, yielding the first examples of 3D organosulfide-halide perovskites: (CYS)PbX (X = Cl or Br). Notably, the band structures of (CYS)PbX capture the direct bandgaps and dispersive bands of APbX perovskites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic CeV-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15.
View Article and Find Full Text PDFConducting organic materials, such as doped organic polymers, molecular conductors and emerging coordination polymers, underpin technologies ranging from displays to flexible electronics. Realizing high electrical conductivity in traditionally insulating organic materials necessitates tuning their electronic structure through chemical doping. Furthermore, even organic materials that are intrinsically conductive, such as single-component molecular conductors, require crystallinity for metallic behaviour.
View Article and Find Full Text PDF