Publications by authors named "Karen Z Hatsagortsyan"

Transient electron dynamics near the interface of counterstreaming plasmas at the onset of a relativistic collisionless shock (RCS) is investigated using particle-in-cell simulations. We identify a slingshotlike injection process induced by the drifting electric field sustained by the flowing focus of backward-moving electrons, which is distinct from the well-known stochastic acceleration. The flowing focus signifies the plasma kinetic transition from a preturbulent laminar motion to a chaotic turbulence.

View Article and Find Full Text PDF

The ion momentum distribution in the x-ray-induced dissociative photoionization of molecules is investigated, treating the ionization analytically under the Born-Oppenheimer approximation and simulating numerically the ion motion via the Schrödinger equation. The ion-photoelectron entanglement transfers information of the electronic interference to the ion dynamics. As a consequence, the ion momentum distributions of dissociative molecular photoionization present Young's double-slit interference when the photoelectron emission angle is fixed.

View Article and Find Full Text PDF

Plasma current filamentation of an ultrarelativistic electron beam impinging on an overdense plasma is investigated, with emphasis on radiation-induced electron polarization. Particle-in-cell simulations provide the classification and in-depth analysis of three different regimes of the current filaments, namely, the normal filament, abnormal filament, and quenching regimes. We show that electron radiative polarization emerges during the instability along the azimuthal direction in the momentum space, which significantly varies across the regimes.

View Article and Find Full Text PDF

Recently two-center interference in single-photon molecular ionization was employed to observe a zeptosecond time delay due to the photon propagation of the internuclear distance in a molecule [Grundmann et al., Science 370, 339 (2020)SCIEAS0036-807510.1126/science.

View Article and Find Full Text PDF

Electron beam longitudinal polarization during the interaction with counterpropagating circularly polarized ultraintense laser pulses is investigated, while accounting for the anomalous magnetic moment of the electron. Although it is known that the helicity transfer from the laser photons to the electron beam is suppressed in linear and nonlinear Compton scattering processes, we show that the helicity transfer nevertheless can happen via an intermediate step of the electron radiative transverse polarization, phase matched with the driving field, followed up by spin rotation into the longitudinal direction as induced by the anomalous magnetic moment of the electron. With spin-resolved QED Monte Carlo simulations, we demonstrate the consequent helicity transfer from laser photons to the electron beam with a degree up to 10%, along with an electron radial polarization up to 65% after multiple photon emissions in a femtosecond timescale.

View Article and Find Full Text PDF

Generation of arbitrarily spin-polarized electron and positron beams has been investigated in the single-shot interaction of high-energy polarized -photons with an ultraintense asymmetric laser pulse via nonlinear Breit-Wheeler pair production. We develop a fully spin-resolved semi-classical Monte Carlo method to describe the pair creation and polarization. In the considered general setup, there are two sources of the polarization of created pairs: the spin angular momentum transfer from the polarized parent -photons, as well as the asymmetry and polarization of the driving laser field.

View Article and Find Full Text PDF

Interaction of an ultrastrong short laser pulse with nonprepolarized near-critical density plasma is investigated in an ultrarelativistic regime, with an emphasis on the radiative spin polarization of ejected electrons. Our particle-in-cell simulations show explicit correlations between the angle resolved electron polarization and the structure and properties of the transient quasistatic plasma magnetic field. While the magnitude of the spin signal is the indicator of the magnetic field strength created by the longitudinal electron current, the asymmetry of electron polarization is found to gauge the islandlike magnetic distribution which emerges due to the transverse current induced by the laser wave front.

View Article and Find Full Text PDF

Generation of circularly polarized (CP) and linearly polarized (LP) γ rays via the single-shot interaction of an ultraintense laser pulse with a spin-polarized counterpropagating ultrarelativistic electron beam has been investigated in nonlinear Compton scattering in the quantum radiation-dominated regime. For the process simulation, a Monte Carlo method is developed which employs the electron-spin-resolved probabilities for polarized photon emissions. We show efficient ways for the transfer of the electron polarization to the high-energy photon polarization.

View Article and Find Full Text PDF

The generation of ultrarelativistic polarized positrons during the interaction of an ultrarelativistic electron beam with a counterpropagating two-color petawatt laser pulse is investigated theoretically. Our Monte Carlo simulation, based on a semiclassical model, incorporates photon emissions and pair productions, using spin-resolved quantum probabilities in the local constant field approximation, and describes the polarization of electrons and positrons for the pair production and photon emission processes, as well as the classical spin precession in between. The main reason for the polarization is shown to be the spin asymmetry of the pair production process in strong external fields, combined with the asymmetry of the two-color laser field.

View Article and Find Full Text PDF

Spin polarization of an ultrarelativistic electron beam head-on colliding with an ultraintense laser pulse is investigated in the quantum radiation-dominated regime. We develop a Monte Carlo method to model electron radiative spin effects in arbitrary electromagnetic fields by employing spin-resolved radiation probabilities in the local constant field approximation. Because of spin-dependent radiation reaction, the applied elliptically polarized laser pulse polarizes the initially unpolarized electron beam and splits it along the propagation direction into two oppositely transversely polarized parts with a splitting angle of about tens of milliradians.

View Article and Find Full Text PDF

Gamma-ray beams with a large angular momentum may affect astrophysical phenomena, which calls for appropriate earth-based experimental investigations. For this purpose, we investigate the generation of well-collimated γ-ray beams with a very large orbital angular momentum using nonlinear Compton scattering of a strong laser pulse of twisted photons at ultrarelativistic electrons. Angular momentum conservation among absorbed laser photons, quantum radiation, and electrons is numerically demonstrated in the quantum radiation-dominated regime.

View Article and Find Full Text PDF

The impact of the carrier-envelope phase (CEP) of an intense multicycle laser pulse on the radiation of an electron beam during nonlinear Compton scattering is investigated. We have identified a CEP effect specific to the ultrarelativistic regime. When the electron beam counterpropagates with the laser pulse, pronounced high-energy x-ray double peaks emerge near the backward direction relative to the initial electron motion.

View Article and Find Full Text PDF

A new pathway of strong-laser-field-induced ionization of an atom is identified which is based on recollisions under the tunneling barrier. With an amended strong-field approximation, the interference of the direct and the under-the-barrier recolliding quantum orbits are shown to induce a measurable shift of the peak of the photoelectron momentum distribution. The scaling of the momentum shift is derived relating the momentum shift to the tunneling delay time according to the Wigner concept.

View Article and Find Full Text PDF

Signatures of stochastic effects in the radiation of a relativistic electron beam interacting with a counterpropagating superstrong short focused laser pulse are investigated in a quantum regime when the electron's radiation dominates its dynamics. We consider the electron-laser interaction at near-reflection conditions when pronounced high-energy gamma-ray bursts arise in the backward-emission direction with respect to the initial motion of the electrons. The quantum stochastic nature of the gamma-photon emission is exhibited in the angular distributions of the radiation and explained in an intuitive picture.

View Article and Find Full Text PDF

The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm).

View Article and Find Full Text PDF

The feasibility of the generation of bright ultrashort gamma-ray pulses is demonstrated in the interaction of a relativistic electron bunch with a counterpropagating tightly focused superstrong laser beam in the radiation-dominated regime. The Compton scattering spectra of gamma radiation are investigated using a semiclassical description for the electron dynamics in the laser field and a quantum electrodynamical description for the photon emission. We demonstrate the feasibility of ultrashort gamma-ray bursts of hundreds of attoseconds and of dozens of megaelectronvolt photon energies in the near-backwards direction of the initial electron motion.

View Article and Find Full Text PDF

Two oppositely charged particles created within a microscopic space-time region can be separated, accelerated over a much larger distance, and brought to a recollision by a laser field. Consequently, new reactions become feasible, where the energy absorbed by the particles is efficiently released. By investigating the laser-dressed polarization operator, we identify a new contribution describing high-energy recollisions experienced by an electron-positron pair generated by pure light when a gamma photon impinges on an intense, linearly polarized laser pulse.

View Article and Find Full Text PDF

The intermediate domain of strong-field ionization between the tunneling and multiphoton regimes is investigated using the strong-field approximation and the imaginary-time method. An intuitive model for the dynamics is developed which describes the ionization process within a nonadiabatic tunneling picture with a coordinate dependent electron energy during the under-the-barrier motion. The nonadiabatic effects in the elliptically polarized laser field induce a transversal momentum shift of the tunneled electron wave packet at the tunnel exit and a delayed appearance in the continuum as well as a shift of the tunneling exit towards the ionic core.

View Article and Find Full Text PDF

Stimulated Raman scattering of an ultraintense laser pulse in plasmas is studied by perturbatively including the leading order term of the Landau-Lifshitz radiation reaction force in the equation of motion for plasma electrons. In this approximation, the radiation reaction force causes a phase shift in nonlinear current densities that drive the two Raman sidebands (anti-Stokes and Stokes waves), manifesting itself into the nonlinear mixing of two sidebands. This mixing results in a strong enhancement in the growth of the forward Raman scattering instability.

View Article and Find Full Text PDF

Radiation-reaction effects in the interaction of an electron bunch with a superstrong focused ultrashort laser pulse are investigated in the quantum radiation-dominated regime. The angle-resolved Compton scattering spectra are calculated in laser pulses of variable duration using a semiclassical description for the radiation-dominated dynamics and a full quantum treatment for the emitted radiation. In dependence of the laser-pulse duration we find signatures of quantum radiation reaction in the radiation spectra, which are characteristic for the focused laser beam and visible in the qualitative behavior of both the angular spread and the spectral bandwidth of the radiation spectra.

View Article and Find Full Text PDF

The tunneling dynamics in relativistic strong-field ionization is investigated with the aim to develop an intuitive picture for the relativistic tunneling regime. We demonstrate that the tunneling picture applies also in the relativistic regime by introducing position dependent energy levels. The quantum dynamics in the classically forbidden region features two time scales, the typical time that characterizes the probability density's decay of the ionizing electron under the barrier (Keldysh time) and the time interval which the electron spends inside the barrier (Eisenbud-Wigner-Smith tunneling time).

View Article and Find Full Text PDF

A method is investigated to manipulate the annihilation dynamics of a dense gas of positronium atoms employing superradiance and subradiance regimes of the cooperative spontaneous emission of the system. The corresponding annihilation dynamics is explored in two setups with regard to its fundamental novel properties and controlled by the gas density and by the intensity of a driving strong resonant laser field. In particular, the method allows us to increase the annihilation lifetime of an ensemble of positronium atoms by trapping the atoms in the excited state via collective radiative effects in the resonant laser field.

View Article and Find Full Text PDF

Elastic scattering of laser radiation due to vacuum polarization by spatially modulated strong electromagnetic fields is considered. The Bragg interference arising at a specific impinging direction of the probe wave concentrates the scattered light in specular directions. The interference maxima are enhanced with respect to the usual vacuum polarization effect proportional to the square of the number of modulation periods within the interaction region.

View Article and Find Full Text PDF

A method is proposed for arbitrarily engineering the high-order harmonic generation phase achieved by shaping a laser pulse and employing xuv light or x rays for ionization. This renders the production of bandwidth-limited attosecond pulses possible while avoiding the use of filters for chirp compensation. By adding the first 8 Fourier components to a sinusoidal field of 1016 W/cm2, the bandwidth-limited emission of 8 as is shown to be possible from a Li2+ gas.

View Article and Find Full Text PDF

Using a semiclassical model which incorporates tunneling and Coulomb field effects, the origin of the low-energy structure (LES) in the above-threshold ionization spectrum observed in recent experiments [Blaga, Nature Phys. 5, 335 (2009); Quan, Phys. Rev.

View Article and Find Full Text PDF