High-throughput screening and subsequent optimization led to the discovery of novel 3-oxazolidinedione-6-aryl-pyridinones exemplified by compound 2 as potent and selective EP3 antagonists with excellent pharmacokinetic properties. Compound 2 was orally active and showed robust in vivo activities in overactive bladder models. To address potential bioactivation liabilities of compound 2, further optimization resulted in compounds 9 and 10, which maintained excellent potency, selectivity, and pharmacokinetic properties and showed no bioactivation liability in glutathione trapping studies.
View Article and Find Full Text PDFA series of potent anthranilic acid-based inhibitors of the hepatitis C NS5B polymerase has been identified. The inhibitors bind to a site on NS5B between the thumb and palm regions adjacent to the active site as determined by X-ray crystallography of the enzyme-inhibitor complex. Guided by both molecular modeling and traditional SAR, the enzyme activity of the initial hit was improved by approximately 100-fold, yielding a series of potent and selective NS5B inhibitors with IC50 values as low as 10 nM.
View Article and Find Full Text PDFThe effect of introducing hydrophobic groups onto the disaccharide portion of the mannopeptimycins has been examined. Under acid-catalyzed conditions dimethyl acetals and ketals react on the terminal mannose of the disaccharide moiety of mannopeptimycin-alpha and the cyclohexylalanyl analogue 2. The preferentially formed monofunctionalized 4,6-acetals and -ketals display potent antibacterial activities against Gram-positive microorganisms, including MRSA, PRSP, and VRE pathogens.
View Article and Find Full Text PDFStructural features of two weak inhibitors of the ZipA-FtsZ protein-protein interaction which were found to bind to overlapping but different areas of the key binding site were combined in one new series of carboxybiphenyl-indoles with improved inhibitory activity.
View Article and Find Full Text PDF