Publications by authors named "Karen Westerman"

Previously, in an attempt to isolate stem cells that would be capable of regenerating injured skeletal muscle, we cultured cells derived from muscle, non-adherently, in serum-free media. As a result of the culture conditions used, these cells formed spheres, and thus were referred to as myospheres. It was found that myosphere-derived cells expressed Sca-1, a marker that is not typically associated with myogenic cells, and as a result has generated some questions as to the origin of these cells.

View Article and Find Full Text PDF

Objective: To evaluate the effects of Quality and Outcomes Framework (QOF) incentivised case finding for depression on diagnosis and treatment in targeted and non-targeted long-term conditions.

Design: Interrupted time series analysis.

Setting: General practices in Leeds, UK.

View Article and Find Full Text PDF

A myosphere cell is a unique type of muscle stem cell that is able to maintain its pre-myogenic state in culture over time. These cells are propagated in culture as free-floating, non-adherent spheres. We believe that the 3-dimensional adhesive cell-cell interactions involved in maintaining the sphere-like myosphere structures are also involved in maintaining their longevity in culture.

View Article and Find Full Text PDF

Rationale: Recent work in animal models and humans has demonstrated the presence of organ-specific progenitor cells required for the regenerative capacity of the adult heart. In response to tissue injury, progenitor cells differentiate into specialized cells, while their numbers are maintained through mechanisms of self-renewal. The molecular cues that dictate the self-renewal of adult progenitor cells in the heart, however, remain unclear.

View Article and Find Full Text PDF

Mature adult tissues contain stem cells that express many genes normally associated with the early stage of embryonic development, when maintained in appropriate environments. Cells procured from adult tissues representative of the three germ layers (spinal cord, muscle, and lung), each exhibiting the potential to mature into cells representative of all three germ layers. Cells isolated from adult tissues of different germ layer origin were propagated as nonadherent clusters or spheres that were composed of heterogeneous populations of cells.

View Article and Find Full Text PDF

The β-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of β-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound β(E)/β(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas.

View Article and Find Full Text PDF

The effectiveness of cell-based therapy to treat muscle disease has been hampered by difficulties in isolating, maintaining and propagating the stem cells that are needed for treatment. Here we report the isolation of muscle-derived stem cells from both young and old mice and their propagation over extended periods of time in culture as "free-floating" myospheres. Analysis of these sphere-forming cells showed that they express stem cell antigen-1 (Sca-1), beta1 integrin (CD29), Thy-1 (CD90), and CD34, but did not express CD45, CD31, or myogenic markers (Pax7, Myf5, and MyoD).

View Article and Find Full Text PDF

Recently, the side population (SP) phenotype has been introduced as a reliable marker to identify subpopulations of cells with stem/progenitor cell properties in various tissues. We and others have identified SP cells from postmitotic tissues, including adult myocardium, in which they have been suggested to contribute to cellular regeneration following injury. SP cells are identified and characterized by a unique efflux of Hoechst 33342 dye.

View Article and Find Full Text PDF

Background: The structural and enzymatic proteins of the human immunodeficiency virus (HIV) are initially generated as two long polyproteins encoded from overlapping reading frames, one producing the structural proteins (Gag) and the second producing both structural and enzymatic proteins (Gag-Pol). The Gag to Gag-Pol ratio is critical for the proper assembly and maturation of viral particles. To minimize the risk of producing a replication competent lentivirus (RCL), we developed a "super-split" lentiviral packaging system in which Gag was separated from Pol with minimal loss of transducibility by supplying protease (PR) in trans independently of both Gag and Pol.

View Article and Find Full Text PDF

Background/aims: Hepatocyte transplantation and bioartificial liver treatment are attractive alternatives to liver transplantation. The availability of well-characterized human hepatocyte lines facilitates such cell therapies.

Methods: Human hepatocytes were immortalized with a retroviral vector SSR#197 expressing catalytic subunit of human telomerase reverse transcriptase (hTERT) and enhanced green fluorescent protein (EGFP) cDNAs flanked by a pair of loxP recombination targets.

View Article and Find Full Text PDF

Adenosine has been widely associated with hypoxia of many origins, including those associated with inflammation and tumorogenesis. A number of recent studies have implicated metabolic control of adenosine generation at sites of tissue hypoxia. Here, we examine adenosine receptor control and amplification of signaling through transcriptional regulation of endothelial and epithelial adenosine receptors.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) contribute to blood vessel formation in ischemic and tumorous tissues, but comprise only a small population in circulation. We attempted to immortalize putative EPCs from human cord blood. Human CD34+ cord blood cells were cultured in the presence of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF), and transfected with a retroviral vector encoding the simian virus 40 large T (SV40T) antigen.

View Article and Find Full Text PDF

Extracellular adenosine (Ado) has been implicated as central signaling molecule during conditions of limited oxygen availability (hypoxia), regulating physiologic outcomes as diverse as vascular leak, leukocyte activation, and accumulation. Presently, the molecular mechanisms that elevate extracellular Ado during hypoxia are unclear. In the present study, we pursued the hypothesis that diminished uptake of Ado effectively enhances extracellular Ado signaling.

View Article and Find Full Text PDF

A human pancreatic beta-cell line that is functionally equivalent to primary beta-cells has not been available. We established a reversibly immortalized human beta-cell clone (NAKT-15) by transfection of primary human beta-cells with a retroviral vector containing simian virus 40 large T-antigen (SV40T) and human telomerase reverse transcriptase (hTERT) cDNAs flanked by paired loxP recombination targets, which allow deletion of SV40T and TERT by Cre recombinase. Reverted NAKT-15 cells expressed beta-cell transcription factors (Isl-1, Pax 6, Nkx 6.

View Article and Find Full Text PDF

Transplantation of genetically corrected autologous hematopoietic stem cells is an attractive approach for the cure of sickle-cell disease and beta-thalassemia. Here, we infected human cord blood cells with a self-inactivating lentiviral vector encoding an anti-sickling betaA-T87Q-globin transgene and analyzed the transduced progeny produced over a 6-month period after transplantation of the infected cells directly into sublethally irradiated NOD/LtSz-scid/scid mice. Approximately half of the human erythroid and myeloid progenitors regenerated in the mice containing the transgene, and erythroid cells derived in vitro from these in vivo-regenerated cells produced high levels of betaA-T87Q-globin protein.

View Article and Find Full Text PDF

Background And Aims: Liver endothelial cells (LECs) perform an essential role in important pathophysiologic functions in the liver. Establishment of a human LEC line facilitates advances in LEC research. Here, we present immortalization of human LECs using retroviral gene transfer of simian virus 40 large T antigen (SV40T) and human telomerase reverse transcriptase (hTERT).

View Article and Find Full Text PDF

Background: Cholangiocytes perform an essential role in important pathophysiologic functions in the liver. Establishment of a human cholangiocyte line facilitates advances in cholangiocyte research and clinical applications for cell therapies. Here, we describe the immortalization of human cholangiocytes using serial transfection of simian virus 40 large T (SV40T) followed by human telomerase reverse transcriptase (hTERT).

View Article and Find Full Text PDF

Type 1 diabetes results from the destruction of insulin-producing pancreatic beta-cells by a beta-cell-specific autoimmune process. Although converting other cell types into insulin-producing cells may compensate for the loss of the beta-cell mass while evading beta-cell-specific T-cell responses, proof-of-principle of this approach in large animal models is lacking. This investigation was initiated to determine whether an insulin-producing human hepatocyte line can control diabetes when transplanted into totally pancreatectomized diabetic pigs.

View Article and Find Full Text PDF

Human marrow-derived mesenchymal stem cells (MSC), which have the potential to differentiate into mesenchymal tissues, such as bone, cartilage, adipose and bone marrow stroma, were transduced with a retroviral vector carrying the simian virus 40 large T antigen, hygromycin-resistant gene and herpes simplex virus thymidine kinase gene, that can be excised by Cre/loxP site-specific recombination. This resulted in establishment of an MSC cell line, HMSC-1, which retained original surface characteristics and differentiation potential, and exhibited a higher proliferative capacity than parental cells. HMSC-1 expressed mRNAs of BMP-4, Jagged-1, and SCF that are known to promote hematopoiesis.

View Article and Find Full Text PDF

Background: Maintenance of liver-specific functions has been shown to be stabilized by co-cultivation of hepatocytes with hepatic stellate cells (HSC). Because the limited lifespan of human HSC is a major hurdle to their use, the authors report here the amplification of human HSC populations in vitro by retroviral transfer of human telomerase reverse transcriptase (hTERT).

Methods: Human HSC strain LI 90 cells were transduced with a retroviral vector SSR#197 expressing hTERT and green fluorescent protein (GFP) cDNA flanked by a pair of loxP.

View Article and Find Full Text PDF

Achieving long-term pancellular expression of a transferred gene at therapeutic level in a given hematopoietic lineage remains an important goal of gene therapy. Advances have recently been made in the genetic correction of the hemoglobinopathies by means of lentiviral vectors and large locus control region (LCR) derivatives. However, panerythroid beta globin gene expression has not yet been achieved in beta thalassemic mice because of incomplete transduction of the hematopoietic stem cell compartment and position effect variegation of proviruses integrated at a single copy per genome.

View Article and Find Full Text PDF

The shortage of organ donors has impeded the development of human hepatocyte transplantation. Immortalized hepatocytes could provide an unlimited supply of transplantable cells. To determine whether immortalized hepatocytes could provide global metabolic support in end-stage liver disease, 35 immortalized rat hepatocyte clones were developed by transduction with the gene encoding the simian virus 40 T antigen (SV40Tag).

View Article and Find Full Text PDF

Liver regeneration after partial hepatectomy results primarily from the simple division of mature hepatocytes. However, during embryonic and fetal development or in circumstances under which postnatal hepatocytes are injured, organ regeneration is believed to occur from a compartment of epithelial liver stem or progenitor cells with biliary and hepatocytic bipotentiality. The ability to identify, isolate, and transplant epithelial liver stem cells from fetal liver would greatly facilitate the treatment of hepatic diseases currently requiring orthotopic liver transplantation.

View Article and Find Full Text PDF

The application of hepatocyte transplantation (HTX) is increasingly envisioned for temporary metabolic support during acute liver failure and provision of specific liver functions in inherited liver-based metabolic diseases. Compared with whole liver transplantation, HTX is a technically simple procedure and hepatocytes can be cryopreserved for future use. A major limitation of this form of therapy in humans is the worldwide shortage of human livers for isolating an adequate number of transplantable human hepatocyes when needed.

View Article and Find Full Text PDF

Endothelial cells (ECs) play multiple physiological functions and are central to many pathological processes. Various biological studies as well as cell and gene therapy applications would benefit substantially from a procedure that would result in the expansion in culture of large numbers of highly differentiated human ECs. Here, we report the amplification in vitro of human EC populations, which occurred during the first phase of reversible immortalization resulting from the retroviral transfer of an oncogene that was subsequently excised by Cre-loxP-mediated site-specific recombination.

View Article and Find Full Text PDF