Unlabelled: We introduce GO-Elite, a flexible and powerful pathway analysis tool for a wide array of species, identifiers (IDs), pathways, ontologies and gene sets. In addition to the Gene Ontology (GO), GO-Elite allows the user to perform over-representation analysis on any structured ontology annotations, pathway database or biological IDs (e.g.
View Article and Find Full Text PDFThe olfactory epithelium is a sensory neuroepithelium that supports adult neurogenesis and tissue regeneration following injury, making it an excellent model for investigating neural stem cell regulation in vivo. Previous studies have identified the horizontal basal cell (HBC) as the neural stem cell of the postnatal olfactory epithelium. However, the molecules and pathways regulating HBC self-renewal and differentiation are unknown.
View Article and Find Full Text PDFThe Murphy Roths Large (MRL) mouse, a strain capable of regenerating right ventricular myocardium, has a high postmyocardial infarction (post-MI) survival rate compared with C57BL/6J (C57) mice. The biological processes responsible for this survival advantage are unknown. To assess the effect of genetic background, the LG/J strain, which harbours 75% of the MRL composite genome, was included in the study.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (Alk) is a gene expressed in the nervous system that encodes a receptor tyrosine kinase commonly known for its oncogenic function in various human cancers. We have determined that Alk is associated with altered behavioral responses to ethanol in the fruit fly Drosophila melanogaster, in mice, and in humans. Mutant flies containing transposon insertions in dAlk demonstrate increased resistance to the sedating effect of ethanol.
View Article and Find Full Text PDFThe local progenitor population in the olfactory bulb (OB) gives rise to mitral and tufted projection neurons during embryonic development. In contrast, OB interneurons are derived from sources outside the bulb where neurogenesis continues throughout life. While many of the genes involved in OB interneuron development have been characterized, the genetic pathways driving local progenitor cell differentiation in this tissue are largely unknown.
View Article and Find Full Text PDFEnhanced understanding of differential gene expression and biological pathways associated with distinct phases of intramembranous bone regeneration following femoral marrow ablation surgery will improve future advancements regarding osseointegration of joint replacement implants, biomaterials design, and bone tissue engineering. A rat femoral marrow ablation model was performed and genome-wide microarray data were obtained from samples at 1, 3, 5, 7, 10, 14, 28, and 56 days post-ablation, with intact bones serving as controls at Day 0. Bayesian model-based clustering produced eight distinct groups amongst 9,062 significant gene probe sets based on similar temporal expression profiles, which were further categorized into three major temporal classes of increased, variable, and decreased expression.
View Article and Find Full Text PDFTwo major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon-exon junctions were interrogated on a genome-wide scale in differentiating mouse embryonic stem (ES) cells with a prototype Affymetrix microarray.
View Article and Find Full Text PDFBackground: Increased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood.
Methods: To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila, and completed a behavioral survey of strains harboring mutations in ethanol-regulated genes.
The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns.
View Article and Find Full Text PDFDuring the evolution of the Diptera there is a dramatic modification of the embryonic ectoderm, whereby mosquitoes contain separate amnion and serosa lineages while higher flies such as Drosophila melanogaster contain a single amnioserosa. Whole-genome transcriptome assays were performed with isolated serosa from Anopheles gambiae embryos. These assays identified a large number of genes implicated in the production of the larval cuticle.
View Article and Find Full Text PDFGene regulatory networks direct the progressive determination of cell fate during embryogenesis, but how they control cell behavior during morphogenesis remains largely elusive. Cell sorting, microarrays, and targeted molecular manipulations were used to analyze cardiac cell migration in the ascidian Ciona intestinalis. The heart network regulates genes involved in most cellular activities required for migration, including adhesion, cell polarity, and membrane protrusions.
View Article and Find Full Text PDFCurcumin (diferuloyl), from the Indian spice turmeric, reduces oxidative damage and induces apoptosis. Utilizing DNA microarrays, we have demonstrated that a low (5 microM) dose of curcumin added to a mixture of astrocytes and oligodendrocytes (C6 rat glioma cells) in culture for 24 and 48 h significantly modulates gene expression in four primary pathways: oxidative stress, cell cycle control, and DNA transcription and metabolism. Contribution of the pentose phosphate pathway to the pool of NADH upregulates glutathione and activates aldehyde oxidase.
View Article and Find Full Text PDFThe second messenger cAMP acts via protein kinase A (PKA) to induce apoptosis by mechanisms that are poorly understood. Here, we assessed a role for mitochondria and analyzed gene expression in cAMP/PKA-promoted apoptosis by comparing wild-type (WT) S49 lymphoma cells and the S49 variant, D(-) (cAMP-deathless), which lacks cAMP-promoted apoptosis but has wild-type levels of PKA activity and cAMP-promoted G(1) growth arrest. Treatment of WT, but not D(-), S49 cells with 8-CPT-cAMP (8-(4-chlorophenylthio)-adenosine-3':5'-cyclic monophosphate) for 24 h induced loss of mitochondrial membrane potential, mitochondrial release of cytochrome c and SMAC, and increase in caspase-3 activity.
View Article and Find Full Text PDFBackground: The ability of a neuron to regenerate functional connections after injury is influenced by both its intrinsic state and also by extrinsic cues in its surroundings. Investigations of the transcriptional changes undergone by neurons during in vivo models of injury and regeneration have revealed many transcripts associated with these processes. Because of the complex milieu of interactions in vivo, these results include not only expression changes directly related to regenerative outgrowth and but also unrelated responses to surrounding cells and signals.
View Article and Find Full Text PDFBackground: High-throughput mutagenesis of the mammalian genome is a powerful means to facilitate analysis of gene function. Gene trapping in embryonic stem cells (ESCs) is the most widely used form of insertional mutagenesis in mammals. However, the rules governing its efficiency are not fully understood, and the effects of vector design on the likelihood of gene-trapping events have not been tested on a genome-wide scale.
View Article and Find Full Text PDFBackground: Microarray technologies have evolved rapidly, enabling biologists to quantify genome-wide levels of gene expression, alternative splicing, and sequence variations for a variety of species. Analyzing and displaying these data present a significant challenge. Pathway-based approaches for analyzing microarray data have proven useful for presenting data and for generating testable hypotheses.
View Article and Find Full Text PDFSudden cardiac death due to abnormal heart rhythm kills 400,000-460,000 Americans each year. To identify genes that regulate heart rhythm, we are developing a screen that uses mouse embryonic stem cells (mESCs) with gene disruptions that can be differentiated into cardiac cells for phenotyping. Here, we show that the heterozygous disruption of the Akap10 (D-AKAP2) gene that disrupts the final 51 aa increases the contractile response of cultured cardiac cells to cholinergic signals.
View Article and Find Full Text PDFAlthough a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP), a PKA-selective cAMP analog, alters the expression of approximately 4,500 of approximately 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPT-cAMP.
View Article and Find Full Text PDFBackground: Early transition to labor remains a major cause of infant mortality, yet the causes are largely unknown. Although several marker genes have been identified, little is known about the underlying global gene expression patterns and pathways that orchestrate these striking changes.
Results: We performed a detailed time-course study of over 9,000 genes in mouse myometrium at defined physiological states: non-pregnant, mid-gestation, late gestation, and postpartum.
Background: Skeletal muscle remodeling is a critical component of an organism's response to environmental changes. Exercise causes structural changes in muscle and can induce phase shifts in circadian rhythms, fluctuations in physiology and behavior with a period of around 24 hours that are maintained by a core clock mechanism. Both exercise-induced remodeling and circadian rhythms rely on the transcriptional regulation of key genes.
View Article and Find Full Text PDFMAPPFinder is a tool that creates a global gene-expression profile across all areas of biology by integrating the annotations of the Gene Ontology (GO) Project with the free software package GenMAPP http://www.GenMAPP.org.
View Article and Find Full Text PDF