Vascular grafts are used as vascular access for hemodialysis, the most common renal replacement therapy to artificially clean blood waste after kidney malfunction. Despite that they are widely used in clinical practice, upon implantation, synthetic vasculars show complications such as thrombogenesis, reduced patency rates, low blood pressure, or even complete collapse. In this study, a C-shaped vascular graft was manufactured with small intestinal submucosa (SIS) and modified on the surface and the bulk of the material via conjugation of polyethylene glycol (PEG) to obtain a biocompatible and less thrombogenic vascular graft than the commercially available polytetrafluoroethylene (ePTFE) vascular grafts.
View Article and Find Full Text PDFSynthetic vascular access for hemodialysis exhibits biological and mechanical material properties mismatch with the native vessels. These limitations prevent infiltration of endothelial cells and decrease grafts long-term patency, particularly in small diameter vessels. We aimed to design a curved structural reinforced small intestinal submucosa (SIS) vascular graft for hemodialysis access and to evaluate in a porcine animal model graft patency by Doppler ultrasonography, tissue remodeling by histology, and vascular wall Young's modulus after implantation by biaxial tensile test.
View Article and Find Full Text PDFThe purpose of this study was to evaluate a suitable animal model for the in vivo evaluation of patency and vascular tissue regeneration in small intestinal submucosa (SIS) vascular grafts for hemodialysis access. First, a 4-mm U-shaped SIS vascular graft was implanted between the internal carotid artery (CA) and the external jugular vein (JV) in five sheep and six swine. The U-shape grafts remained functional for 53 ± 4 days in sheep and 32 ± 2 days in swine.
View Article and Find Full Text PDF