Lifespan is an integrative phenotype whose genetic architecture is likely to highlight multiple processes with high impact on health and aging. Here, we conduct a genetic meta-analysis of longevity in Diversity Outbred (DO) mice that includes 2,444 animals from three independently conducted lifespan studies. We identify six loci that contribute significantly to lifespan independently of diet and drug treatment, one of which also influences lifespan in a sex-dependent manner, as well as an additional locus with a diet-specific effect on lifespan.
View Article and Find Full Text PDFSubstance use disorders are heritable disorders characterized by compulsive drug use, the biological mechanisms for which remain largely unknown. Genetic correlations reveal that predisposing drug-naïve phenotypes, including anxiety, depression, novelty preference and sensation seeking, are predictive of drug-use phenotypes, thereby implicating shared genetic mechanisms. High-throughput behavioral screening in knockout (KO) mice allows efficient discovery of the function of genes.
View Article and Find Full Text PDFSubstance use disorders (SUDs) are heritable disorders characterized by compulsive drug use, but the biological mechanisms driving addiction remain largely unknown. Genetic correlations reveal that predisposing drug-naïve phenotypes, including anxiety, depression, novelty preference, and sensation seeking, are predictive of drug-use phenotypes, implicating shared genetic mechanisms. Because of this relationship, high-throughput behavioral screening of predictive phenotypes in knockout (KO) mice allows efficient discovery of genes likely to be involved in drug use.
View Article and Find Full Text PDFIn 2021, the National Institutes of Health Advisory Committee to the Director (ACD) announced recommendations to improve the reproducibility of biomedical research using animals. In response, The Jackson Laboratory faculty and institutional leaders identified key strategies to further address this important issue. Taking inspiration from the evolution of clinical trials over recent decades in response to similar challenges, we identified opportunities for improvement, including establishment of common standards, use of genetically diverse populations, requirement for robust study design with appropriate statistical methods, and improvement in public databases to facilitate meta-analyses.
View Article and Find Full Text PDFRecent developments allowed generating multiple high-quality 'omics' data that could increase the predictive performance of genomic prediction for phenotypes and genetic merit in animals and plants. Here, we have assessed the performance of parametric and nonparametric models that leverage transcriptomics in genomic prediction for 13 complex traits recorded in 478 animals from an outbred mouse population. Parametric models were implemented using the best linear unbiased prediction, while nonparametric models were implemented using the gradient boosting machine algorithm.
View Article and Find Full Text PDFWe compared the performance of linear (GBLUP, BayesB, and elastic net) methods to a nonparametric tree-based ensemble (gradient boosting machine) method for genomic prediction of complex traits in mice. The dataset used contained genotypes for 50,112 SNP markers and phenotypes for 835 animals from 6 generations. Traits analyzed were bone mineral density, body weight at 10, 15, and 20 weeks, fat percentage, circulating cholesterol, glucose, insulin, triglycerides, and urine creatinine.
View Article and Find Full Text PDFMany aspects of sleep are heritable, but only a few sleep-regulating genes have been reported. Here, we leverage mouse models to identify and confirm a previously unreported gene affecting sleep duration-dihydropyrimidine dehydrogenase (Dpyd). Using activity patterns to quantify sleep in 325 Diversity Outbred (DO) mice-a population with high genetic and phenotypic heterogeneity-a linkage peak for total sleep in the active lights off period was identified on chromosome 3 (LOD score = 7.
View Article and Find Full Text PDFAnimal models play a critical role in establishing causal relationships between gut microbiota and disease. The laboratory mouse is widely used to study the role of microbes in various disorders; however, differences between mouse vendors, genetic lineages and husbandry protocols have been shown to contribute to variation in phenotypes and to non-reproducibility of experimental results. We sought to understand how gut microbiome profiles of mice vary by vendor, vendor production facility and health status upon receipt into an academic facility and how they change over 12 weeks in the new environment.
View Article and Find Full Text PDFSpecific fat distributions are risk factors for complex diseases, including coronary heart disease and obstructive sleep apnea. To demonstrate the utility of high-diversity mouse models for elucidating genetic associations, we describe the phenotyping and heritability of fat distributions within the five classical inbred and three wild-derived founder mouse strains of the Collaborative Cross and Diversity Outbred mice. Measurements of subcutaneous and internal fat volumes in the abdomen, thorax and neck, and fat volumes in the tongue and pericardium were obtained using magnetic resonance imaging in male mice from the A/J (n = 12), C57BL/6J (n = 17), 129S1/SvlmJ (n = 12), NOD/LtJ (n = 14), NZO/HILtJ (n = 12), CAST/EiJ (n = 14), PWK/PhJ (n = 12), and WSB/EiJ (n = 15) strains.
View Article and Find Full Text PDFThe genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD.
View Article and Find Full Text PDFStudy Objectives: This study describes high-throughput phenotyping strategies for sleep and circadian behavior in mice, including examinations of robustness, reliability, and heritability among Diversity Outbred (DO) mice and their eight founder strains.
Methods: We performed high-throughput sleep and circadian phenotyping in male mice from the DO population (n = 338) and their eight founder strains: A/J (n = 6), C57BL/6J (n = 14), 129S1/SvlmJ (n = 6), NOD/LtJ (n = 6), NZO/H1LtJ (n = 6), CAST/EiJ (n = 8), PWK/PhJ (n = 8), and WSB/EiJ (n = 6). Using infrared beam break systems, we defined sleep as at least 40 s of continuous inactivity and quantified sleep-wake amounts and bout characteristics.
We identified a mouse strain, HLB444, carrying an N-ethyl-N-nitrosourea (ENU)-induced mutation in a highly conserved C2H2 zinc-finger DNA binding motif of the transcriptional regulator KLF15 that exhibits resistance to diet-induced obesity. Characterization of the HLB444 mutant model on high-fat and chow diets revealed a number of phenotypic differences compared to wild-type controls. When fed a high fat diet, HLB444 had lower body fat, resistance to hepatosteatosis, lower circulating glucose and improved insulin sensitivity compared to C57BL/6J controls.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
January 2020
This meeting report is based on presentations given at the first Drug Safety Africa Meeting in Potchefstroom, South Africa from November 20-22, 2018 at the North-West University campus. There were 134 attendees (including 26 speakers and 34 students) from the pharmaceutical industry, academia, regulatory agencies as well as 6 exhibitors. These meeting proceedings are designed to inform the content that was presented in terms of Safety Pharmacology (SP) and Toxicology methods and models that are used by the pharmaceutical industry to characterize the safety profile of novel small chemical or biological molecules.
View Article and Find Full Text PDFData cleaning is an important first step in most statistical analyses, including efforts to map the genetic loci that contribute to variation in quantitative traits. Here we illustrate approaches to quality control and cleaning of array-based genotyping data for multiparent populations (experimental crosses derived from more than two founder strains), using MegaMUGA array data from a set of 291 Diversity Outbred (DO) mice. Our approach employs data visualizations that can reveal problems at the level of individual mice or with individual SNP markers.
View Article and Find Full Text PDFTransgenesis has been a mainstay of mouse genetics for over 30 yr, providing numerous models of human disease and critical genetic tools in widespread use today. Generated through the random integration of DNA fragments into the host genome, transgenesis can lead to insertional mutagenesis if a coding gene or an essential element is disrupted, and there is evidence that larger scale structural variation can accompany the integration. The insertion sites of only a tiny fraction of the thousands of transgenic lines in existence have been discovered and reported, due in part to limitations in the discovery tools.
View Article and Find Full Text PDFSpace recommendations for mice made in the Guide for Care and Use of Laboratory Animals have not changed since 1972, despite important improvements in husbandry and caging practices. The 1996 version of the Guide put forth a challenge to investigators to produce new data evaluating the effects of space allocation on the well-being of mice. In this review, we summarize many studies published in response to this challenge.
View Article and Find Full Text PDFMetabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes.
View Article and Find Full Text PDF