Publications by authors named "Karen Sloyan"

Plan-view transmission electron microscopy (TEM) or electron diffraction imaging of a bulk or 2D material can provide detailed information about the structural or atomic arrangement in the material. A systematic and easily implementable approach to preparing site-specific plan-view TEM samples for 2D thin film materials using FIB is discussed that could be routinely used. The methodology has been successfully applied to prepare samples from 2D materials such as, MoS thin film, vertically oriented graphene film (VG), as well as heterostructure material SnTiS.

View Article and Find Full Text PDF

Focused ion beam (FIB) technology has become a promising technique in micro- and nano-prototyping due to several advantages over its counterparts such as direct (maskless) processing, sub-10 nm feature size, and high reproducibility. Moreover, FIB machining can be effectively implemented on both conventional planar substrates and unconventional curved surfaces such as optical fibers, which are popular as an effective medium for telecommunications. Optical fibers have also been widely used as intrinsically light-coupled substrates to create a wide variety of compact fiber-optic devices by FIB milling diverse micro- and nanostructures onto the fiber surface (endfacet or outer cladding).

View Article and Find Full Text PDF

The wetting behavior of homogeneous systems is now well understood at the macroscopic scale. However, this understanding offers little predictive power regarding wettability when mesoscopic chemical and morphological heterogeneities come into play. The fundamental interest in the effect of heterogeneity on wettability is derived from its high technological relevance in several industries, including the petroleum industry where wettability is recognized as a key determinant of the overall efficiency of the water-flooding-based enhanced oil recovery process.

View Article and Find Full Text PDF

A gradient-index optical fiber lens is proposed and fabricated on the tip of a single-mode fiber using focused ion beam milling. Second-order effective medium theory is used to design a gradual change in the fill factor, which ensures a parabolic effective refractive index distribution. The proposed fiber lens design is simulated via the three-dimensional finite-difference time-domain method, and demonstrated through confocal optical measurements.

View Article and Find Full Text PDF