Publications by authors named "Karen Seeberger"

One strategy to prevent islet rejection is to create a favorable immune-protective local environment at the transplant site. Herein, we utilize localized cyclosporine A (CsA) delivery to islet grafts via poly(lactic-co-glycolic acid) (PLGA) microparticles to attenuate allograft rejection. CsA-eluting PLGA microparticles were prepared using a single emulsion (oil-in-water) solvent evaporation technique.

View Article and Find Full Text PDF
Article Synopsis
  • Beta cell replacement therapies show promise for improving blood sugar control in type 1 diabetes, but long-term immune suppression limits their effectiveness compared to insulin.
  • Researchers studied a coating made from poly(N-vinylpyrrolidone) and tannic acid (PVPON/TA) to protect transplanted islets from the immune system while maintaining their function.
  • Results indicated that both coated and non-coated islets performed similarly in lab tests, and the PVPON/TA-coating improved transplant outcomes by reducing inflammation and delaying rejection in mice.
View Article and Find Full Text PDF

Neonatal porcine islets (NPIs) are a source of islets for xenotransplantation. In the pig, the pancreatic lobes remain separate, thus, when optimizing NPI isolation, the pancreatic lobes included in the pancreatic digest should be specified. These lobes are the duodenal (DL), splenic (SL) and connecting (CL) lobe that correspond to the head, body-tail, and uncinate process of the human pancreas.

View Article and Find Full Text PDF

The subcutaneous space is currently being pursued as an alternative transplant site for ß-cell replacement therapies due to its retrievability, minimally invasive procedure and potential for graft imaging. However, implantation of ß-cells into an unmodified subcutaneous niche fails to reverse diabetes due to a lack of adequate blood supply. Herein, poly (ε-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA) polymers were used to make scaffolds and were functionalized with peptides (RGD (Arginine-glycine-aspartate), VEGF (Vascular endothelial growth factor), laminin) or gelatin to augment engraftment.

View Article and Find Full Text PDF

Background: Islet transplantation with neonatal porcine islets (NPIs) is a promising treatment for type 1 diabetes (T1D), but immune rejection poses a major hurdle for clinical use. Innate immune-derived reactive oxygen species (ROS) synthesis can facilitate islet xenograft destruction and enhance adaptive immune responses.

Methods: To suppress ROS-mediated xenograft destruction, we utilized nanothin encapsulation materials composed of multilayers of tannic acid (TA), an antioxidant, and a neutral polymer, poly(N-vinylpyrrolidone) (PVPON).

View Article and Find Full Text PDF

Background: Neonatal porcine islets (NPIs) can restore glucose control in mice, pigs, and non-human primates, representing a potential abundant alternative islet supply for clinical beta cell replacement therapy. However, NPIs are vulnerable to inflammatory insults that could be overcome with genetic modifications. Here, we demonstrate in a series of proof-of-concept experiments the potential of the cytoplasmic ubiquitin-editing protein A20, encoded by the TNFAIP3 gene, as an NPI cytoprotective gene.

View Article and Find Full Text PDF

Background: Cell transplantation has been widely recognized as a curative treatment strategy for variety of diseases including type I diabetes (T1D). Broader patient inclusion for this therapeutic option is restricted by a limited supply of healthy human islet donors and significant loss of islets immediately postintrahepatic transplant due to immune activation. Neonatal porcine islets (NPIs) are a potential ubiquitous β-cell source for treating T1D.

View Article and Find Full Text PDF

Background: Neonatal porcine islets (NPIs) are a promising tissue source for clinical islet xenotransplantation. To facilitate graft monitoring and recovery if needed, an extra-hepatic transplant site would be optimal. In addition, islet transplantation into the portal vein has been associated with life-threatening intraperitoneal bleeding, portal vein thrombosis, hepatic steatosis, and loss of islet graft function.

View Article and Find Full Text PDF

The broad application of ß cell transplantation for type 1 diabetes is hindered by the requisite of lifelong systemic immunosuppression. This study examines the utility of localized islet graft drug delivery to subvert the inflammatory and adaptive immune responses. Herein, we have developed and characterized dexamethasone (Dex) eluting Food and Drug Administration-approved micro-Poly(lactic-co-glycolic acid) micelles and examined their efficacy in a fully major histocompatibility complex-mismatch murine islet allograft model.

View Article and Find Full Text PDF

Islet transplantation can restore lost glycemic control in type 1 diabetes subjects but is restricted in its clinical application by a limiting supply of islets and the need for heavy immune suppression to prevent rejection. TNFAIP3, encoding the ubiquitin editing enzyme A20, regulates the activation of immune cells by raising NF-κB signaling thresholds. Here, we show that increasing A20 expression in allogeneic islet grafts resulted in permanent survival for ~45% of recipients, and > 80% survival when combined with subtherapeutic rapamycin.

View Article and Find Full Text PDF

Background: There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted.

Methods: Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, β-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing.

View Article and Find Full Text PDF

Background: There is a strong rationale to pursue the use of neonatal porcine islets (NPIs) as an unlimited source of islets for clinical xenotransplantation. Because NPIs are composed of immature insulin producing beta (ß) cells and ductal precursor cells, they provide an ideal model to examine culture conditions to enhance ß cell proliferation and/or ß cell neoformation from ductal cells. In an attempt to optimize the potential of NPIs as a source of ß cell grafts, we used an in vitro differentiation protocol and measured its effect on the functional maturation and differentiation of NPIs.

View Article and Find Full Text PDF

Human islet transplantation has been hampered by donor cell death associated with the islet preparation procedure before transplantation. Regulated necrosis pathways are biochemically and morphologically distinct from apoptosis. Recently, ferroptosis was identified as a non-apoptotic form of iron-dependent regulated necrosis implicated in various pathological conditions.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) possess immunoregulatory, anti-inflammatory, and proangiogenic properties and, therefore, have the potential to improve islet engraftment and survival. We assessed the effect human bone marrow-derived MSCs have on neonatal porcine islets (NPIs) in vitro and determined islet engraftment and metabolic outcomes when cotransplanted in a mouse model. NPIs cocultured with MSCs had greater cellular insulin content and increased glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

Aim: To minimize the expansion of pancreatic mesenchymal cells in vitro and confirm that β-cell progenitors reside within the pancreatic epithelium.

Methods: Due to mesenchymal stem cell (MSC) expansion and overgrowth, progenitor cells within the pancreatic epithelium cannot be characterized in vitro, though β-cell dedifferentiation and expansion of MSC intermediates via epithelial-mesenchymal transition (EMT) may generate β-cell progenitors. Pancreatic epithelial cells from endocrine and non-endocrine tissue were expanded and differentiated in a novel pancreatic epithelial expansion medium supplemented with growth factors known to support epithelial cell growth (dexamethasone, epidermal growth factor, 3,5,3'-triiodo-l-thyronine, bovine brain extract).

View Article and Find Full Text PDF

Islet transplantation is a promising treatment for Type 1 diabetes; however limitations of the intra-portal site and poor revascularization of islets must be overcome. We hypothesize that engineering a highly vascularized collagen-based construct will allow islet graft survival and function in alternative sites. In this study, we developed such a collagen-based biomaterial.

View Article and Find Full Text PDF

Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to that in adults, infant islets after isolation and 24-48 hours of culture had less insulin staining, content, and secretion.

View Article and Find Full Text PDF

Transplantation of human islets is an attractive alternative to daily insulin injections for patients with type 1 diabetes. However, the majority of islet recipients lose graft function within five years. Inflammation is a primary contributor to graft loss, and inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts.

View Article and Find Full Text PDF

Mesenchymal stem cells, also termed multipotent mesenchymal stromal cells (MSCs), can be isolated from most adult tissues. Although the exact origin of MSCs expanded from the human pancreas has not been resolved, we have developed protocols to isolate and expand MSCs from human pancreatic tissue that remains after islet procurement. Similar to techniques used to isolate MSCs from bone marrow, pancreatic MSCs are isolated based on their cell adherence, expression of several cell surface antigens, and multilineage differentiation.

View Article and Find Full Text PDF

Pancreatic mesenchymal stem cells (MSCs) may be derived from human beta-cells undergoing reversible epithelial-mesenchymal transition (EMT), suggesting that they could be a potential source of new beta-cells. In this study we sought to determine the origin of pancreatic MSCs in the nonendocrine pancreas. Double immunofluorescent (IF) staining and flow cytometry were used to assess the cell phenotype of nonendocrine pancreas tissue following islet procurement, during in vitro expansion of MSCs, and after differentiation.

View Article and Find Full Text PDF

Fibroblast-like cells emerging from cultured human pancreatic endocrine and exocrine tissue have been reported. Although a thorough phenotypic characterization of these cells has not yet been carried out, these cells have been hypothesized to be contaminating fibroblasts, mesenchyme and/or possibly beta-cell progenitors. In this study, we expanded fibroblast-like cells from adult human exocrine pancreas following islet isolation and characterized these cells as mesenchymal stem cells (MSCs) based on their cell surface antigen expression and ability to differentiate into mesoderm.

View Article and Find Full Text PDF

Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes.

View Article and Find Full Text PDF

Sertoli cells from the testis contain immunoprotective properties which allow them to survive as allografts and also to protect islets and adrenal chromafin cells from immune rejection without the use of immunosuppressive drugs. Experiments were designed to determine whether xenogeneic neonatal porcine Sertoli cells (NPSCs) survive transplantation in rats without the use of immunosuppression. NPSCs (92.

View Article and Find Full Text PDF

Objective: In multiple myeloma (MM), the immunoglobulin gene rearrangement characterizing malignant plasma cells is unique. For a patient with multiple myeloma who underwent a B-cell leukemic blast transformation, using the immunoglobulin molecular signature, we characterized the clonal relationship to autologous plasma cells and the impact on normal polyclonal B-lymphocyte populations.

Methods: Single-cell reverse transcriptase polymerase chain reaction (RT-PCR)/PCR was used to determine the clonal relationship between autologous MM plasma cells and leukemic B cells.

View Article and Find Full Text PDF

Purpose: The transformation status and role of clonotypic pre-switch IgM in the evolution of malignant post-switch multiple myeloma (MM) cells is unclear. In this study, we determined the differentiation stage within the B lineage of clonotypic cells from malignant and nonclinical isotype pools by analyzing the frequency and intraclonal diversity of members within each isotype pool.

Results: Immunoglobulin VDJ transcripts were amplified from peripheral blood cells of seven patients with a hemi-nested reverse transcription-PCR with complementarity determining region 1 (CDR1)-specific and constant region primers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontqm95mu79u0hpqqim8rvohcgj45ttrdi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once