The measurement of serum vancomycin levels at the clinic is critical to optimizing dosing given the narrow therapeutic window of this antibiotic. Current approaches to quantitate serum vancomycin levels are based on immunoassays, which are multistep methods requiring extensive processing of patient samples. As an alternative, vancomycin-binding electrochemical, aptamer-based sensors (E-ABs) were developed to simplify the workflow of vancomycin monitoring.
View Article and Find Full Text PDFThe beautiful and complex brain machinery is perfectly synchronized, and our bodies have evolved to protect it against a myriad of potential threats. Shielded physically by the skull and chemically by the blood brain barrier, the brain processes internal and external information so that we can efficiently relate to the world that surrounds us while simultaneously and unconsciously controlling our vital functions. When coupled with the brittle nature of its internal chemical and electric signals, the brain's "armor" render accessing it a challenging and delicate endeavor that has historically limited our understanding of its structural and neurochemical intricacies.
View Article and Find Full Text PDFBipolar electrodes (BPEs) are conductors that, when exposed to an electric field, polarize and promote the accumulation of counterionic charge near their poles. The rich physics of electrokinetic behavior near BPEs has not yet been rigorously studied, with our current understanding of such bipolar effects being restricted to steady-state conditions (under constant applied fields). Here, we reveal the dynamic electrokinetic and electrochemical phenomena that occur near nanoconfined BPEs throughout all stages of a reaction.
View Article and Find Full Text PDFThe electrochemical, aptamer-based (E-AB) sensor platform provides a modular approach to the continuous, real-time measurement of specific molecular targets (irrespective of their chemical reactivity) in situ in the living body. To achieve this, however, requires the fabrication of sensors small enough to insert into a vein, which, for the rat animal model we employ, entails devices less than 200 μm in diameter. The limited surface area of these small devices leads, in turn, to low faradaic currents and poor signal-to-noise ratios when deployed in the complex, fluctuating environments found in vivo.
View Article and Find Full Text PDFWe report a paper-based assay platform for the detection of the kidney disease marker Trefoil Factor 3 (TFF3) in human urine. The sensor is based on a quantitative metalloimmunoassay that can determine TFF3 concentrations via electrochemical detection of environmentally stable silver nanoparticle (AgNP) labels attached to magnetic microbeads via a TFF3 immunosandwich. The paper electroanalytical device incorporates two preconcentration steps that make it possible to detect concentrations of TFF3 in human urine at the low end of the target TFF3 concentration range (0.
View Article and Find Full Text PDFHere we show that a simple paper-based electrochemical sensor, fabricated by paper folding, is able to detect a 30-base nucleotide sequence characteristic of DNA from the hepatitis B virus (HBV) with a detection limit of 85 pM. This device is based on design principles we have reported previously for detecting proteins via a metalloimmunoassay. It has four desirable attributes.
View Article and Find Full Text PDFWe report a paper-based assay platform for detection of ricin a chain. The paper platform is assembled by simple origami paper folding. The sensor is based on quantitative, electrochemical detection of silver nanoparticle labels linked to a magnetic microbead support via a ricin immunosandwich.
View Article and Find Full Text PDFWe report a new type of paper analytical device that provides quantitative electrochemical output and detects concentrations as low as 767 fM. The model analyte is labeled with silver nanoparticles (AgNPs), which provide 250,000-fold amplification. AgNPs eliminate the need for enzymatic amplification, thereby improving device stability and response time.
View Article and Find Full Text PDFWe demonstrate the hybridization-induced fluorescence detection of DNA on an origami-based paper analytical device (oPAD). The paper substrate was patterned by wax printing and controlled heating to construct hydrophilic channels and hydrophobic barriers in a three-dimensional fashion. A competitive assay was developed where the analyte, a single-stranded DNA (ssDNA), and a quencher-labeled ssDNA competed for hybridization with a fluorophore-labeled ssDNA probe.
View Article and Find Full Text PDFTo overcome the problem of poor sensitivity of capillary electrophoresis-UV absorbance for the detection of aliphatic amines, a solid phase extraction and derivatization scheme was developed. This work demonstrates successful coupling of amines to a chromophore immobilized on a solid phase and subsequent cleavage and analysis. Although the analysis of many types of amines is relevant for myriad applications, this paper focuses on the derivatization and separation of amines with environmental relevance.
View Article and Find Full Text PDFA bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery.
View Article and Find Full Text PDFA method for controlling enrichment, separation, and delivery of analytes into different secondary microchannels using simple microfluidic architecture is described. The approach, which is based on bipolar electrochemistry, requires only easily fabricated electrodes and a low-voltage DC power supply: no pumps or valves are necessary. Upon application of a voltage between two driving electrodes, passive bipolar electrodes (BPEs) are activated that result in formation of a local electric field gradient.
View Article and Find Full Text PDFThe objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005-2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically.
View Article and Find Full Text PDF