Liamocins are a class of biosurfactants with growing interest. However, methods for identification and quantification of liamocins on the molecular level are lagging behind. Therefore, we developed a chromatographic separation based on supercritical fluid chromatography (SFC) for liamocins and structurally related exophilins.
View Article and Find Full Text PDFLiamocin biosurfactants and structurally related exophilins secreted by the Aureobasidium pullulans (A. pullulans) strain NRRL62031 were firstly analyzed by hyphenation of high-performance liquid chromatography (HPLC) with high-resolution mass spectrometry (HRMS). Ten different analytes were detected and identified by their accurate masses and divided into subclasses according to their different head groups: three liamocins with arabitol as head group, three mannitol liamocins, and four exophilins.
View Article and Find Full Text PDFWhile rhamnolipids of the type are commercially available, the natural diversity of rhamnolipids and their origin have barely been investigated. Here, we collected known and identified new genes encoding the acyltransferase responsible for the synthesis of the lipophilic rhamnolipid precursor 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA). Generally, all homologs were found in and A likely horizontal gene transfer event into is the only identified exception.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2019
Liamocins are biosurfactants produced by the fungus Aureobasidium pullulans. A. pullulans belongs to the black yeasts and is known for its ability to produce pullulan and melanin.
View Article and Find Full Text PDFA new heated capillary photoionization (CPI) ion source design was developed to photoionize analytes inside a transfer capillary between a gas chromatograph (GC) and a mass spectrometer (MS). The CPI setup included a wide, oval-shaped vacuum-ultraviolet (VUV) transparent magnesium fluoride (MgF) window to maximize photoionization efficiency and thus sensitivity. The source contained a nitrogen housing around the ionization chamber inlet to avoid undesirable hydrolysis and oxidation reactions with ambient air and to maximize the proportion of formed molecular radical cations of analytes.
View Article and Find Full Text PDFThe structures of three previously unknown siderophores produced by the fluorescent, biotechnologically relevant Pseudomonas taiwanensis (P. taiwanensis) VLB120 bacteria were elucidated by means of hydrophilic interaction liquid chromatography (HILIC) hyphenated to high-resolution tandem mass spectrometry (HRMS/MS). They could be verified as iron(III)- and aluminum(III) complexes as well as the protonated molecules of the siderophores formed by in-source fragmentation.
View Article and Find Full Text PDFThe previously unknown sequences of several pyoverdines (PVD) produced by a biotechnologically-relevant bacterium, namely, Pseudomonas taiwanensis VLB120, were characterized by high performance liquid chromatography (HPLC)-high resolution mass spectrometry (HRMS). The same structural characterization scheme was checked before by analysis of Pseudomonas sp. putida KT2440 samples with known PVDs.
View Article and Find Full Text PDF