Publications by authors named "Karen Rex"

Free (unbound) drug concentration at the site of action is the key determinant of biologic activity since only unbound drugs can exert pharmacological and toxicological effects. Unbound drug concentration in tumors for solid cancers is needed to understand/explain/predict pharmacokinetics, pharmacodynamics, and efficacy relations. Fraction unbound ( ) in tumors is usually determined across several xenografted tumors derived from various cell lines in the drug discovery stage, which is time consuming and a resource burden.

View Article and Find Full Text PDF

Drug resistance is a long-standing impediment to effective systemic cancer therapy and acquired drug resistance is a growing problem for molecularly-targeted therapeutics that otherwise have shown unprecedented successes in disease control. The hepatocyte growth factor (HGF)/Met receptor pathway signaling is frequently involved in cancer and has been a subject of targeted drug development for nearly 30 years. To anticipate and study specific resistance mechanisms associated with targeting this pathway, we engineered resistance to the HGF-neutralizing antibody rilotumumab in glioblastoma cells harboring autocrine HGF/Met signaling, a frequent abnormality of this brain cancer in humans.

View Article and Find Full Text PDF

KRAS has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-"undruggable" target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRAS to identify inhibitors suitable for clinical development.

View Article and Find Full Text PDF

KRAS is the most frequently mutated oncogene in cancer and encodes a key signalling protein in tumours. The KRAS(G12C) mutant has a cysteine residue that has been exploited to design covalent inhibitors that have promising preclinical activity. Here we optimized a series of inhibitors, using novel binding interactions to markedly enhance their potency and selectivity.

View Article and Find Full Text PDF
Article Synopsis
  • Receptor tyrosine kinase inhibitors have had some success in treating clear cell renal cell carcinoma (ccRCC), but new treatment options are necessary due to unmet needs.
  • This study examines the effects of trebananib, an angiopoietin 1/2 inhibitor, and a MET kinase inhibitor on tumor growth, metastases, and the behavior of macrophages in patient-derived models of ccRCC.
  • Results showed that the combination therapy significantly reduced lung metastases and M2 macrophage infiltration, while also improving survival rates in treated mice, suggesting this approach could be a viable treatment strategy for ccRCC patients.
View Article and Find Full Text PDF

Pim kinases are a family of constitutively active serine/threonine kinases that are partially redundant and regulate multiple pathways important for cell growth and survival. In human disease, high expression of the three Pim isoforms has been implicated in the progression of hematopoietic and solid tumor cancers, which suggests that Pim kinase inhibitors could provide patients with therapeutic benefit. Herein, we describe the structure-guided optimization of a series of quinazolinone-pyrrolodihydropyrrolone analogs leading to the identification of potent pan-Pim inhibitor 28 with improved potency, solubility, and drug-like properties.

View Article and Find Full Text PDF

The receptor tyrosine kinase (RTK) MET represents a promising tumor target in a subset of glioblastomas. Most RTK inhibitors available in the clinic today, including those inhibiting MET, affect multiple targets simultaneously. Previously, it was demonstrated that treatment with cabozantinib (MET/VEGFR2/RET inhibitor) prolonged survival of mice carrying orthotopic patient-derived xenografts (PDX) of the MET-addicted glioblastoma model E98, yet did not prevent development of recurrent and cabozantinib-resistant tumors.

View Article and Find Full Text PDF

The high expression of proviral insertion site of Moloney murine leukemia virus kinases (Pim-1, -2, and -3) in cancers, particularly the hematopoietic malignancies, is believed to play a role in promoting cell survival and proliferation while suppressing apoptosis. The three isoforms of Pim protein appear largely redundant in their oncogenic functions. Thus, a pan-Pim kinase inhibitor is highly desirable.

View Article and Find Full Text PDF

The MET receptor tyrosine kinase is involved in cell growth, survival, and invasion. Clinical studies with small molecule MET inhibitors have shown the role of biomarkers in identifying patients most likely to benefit from MET-targeted therapy. AMG 337 is an oral, small molecule, ATP-competitive, highly selective inhibitor of the MET receptor.

View Article and Find Full Text PDF

Aberrant hepatocyte growth factor (HGF)/MET signaling has been implicated in hepatocarcinogenesis, suggesting that MET may serve as an attractive therapeutic target in hepatocellular carcinoma. We sought to investigate the in vitro and in vivo antitumor activity of AMG 337, a potent and highly selective small molecule MET kinase inhibitor, in preclinical models of hepatocellular carcinoma. The antiproliferative activity of AMG 337 was evaluated across a panel of hepatocellular carcinoma cell lines in a viability assay.

View Article and Find Full Text PDF

The identification of Pim-1/2 kinase overexpression in B-cell malignancies suggests that Pim kinase inhibitors will have utility in the treatment of lymphoma, leukemia, and multiple myeloma. Starting from a moderately potent quinoxaline-dihydropyrrolopiperidinone lead, we recognized the potential for macrocyclization and developed a series of 13-membered macrocycles. The structure-activity relationships of the macrocyclic linker were systematically explored, leading to the identification of 9c as a potent, subnanomolar inhibitor of Pim-1 and -2.

View Article and Find Full Text PDF

Deregulation of the receptor tyrosine kinase mesenchymal epithelial transition factor (MET) has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, we report the discovery of compound 23 (AMG 337), which demonstrates nanomolar inhibition of MET kinase activity, desirable preclinical pharmacokinetics, significant inhibition of MET phosphorylation in mice, and robust tumor growth inhibition in a MET-dependent mouse efficacy model.

View Article and Find Full Text PDF

The overexpression of c-Met and/or hepatocyte growth factor (HGF), the amplification of the MET gene, and mutations in the c-Met kinase domain can activate signaling pathways that contribute to cancer progression by enabling tumor cell proliferation, survival, invasion, and metastasis. Herein, we report the discovery of 8-fluorotriazolopyridines as inhibitors of c-Met activity. Optimization of the 8-fluorotriazolopyridine scaffold through the combination of structure-based drug design, SAR studies, and metabolite identification provided potent (cellular IC50 < 10 nM), selective inhibitors of c-Met with desirable pharmacokinetic properties that demonstrate potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver pharmacodynamic model.

View Article and Find Full Text PDF

Sphingosine kinases (SPHKs) are enzymes that phosphorylate the lipid sphingosine, leading to the formation of sphingosine-1-phosphate (S1P). In addition to the well established role of extracellular S1P as a mitogen and potent chemoattractant, SPHK activity has been postulated to be an important intracellular regulator of apoptosis. According to the proposed rheostat theory, SPHK activity shifts the intracellular balance from the pro-apoptotic sphingolipids ceramide and sphingosine to the mitogenic S1P, thereby determining the susceptibility of a cell to apoptotic stress.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) signaling plays a vital role in mitogenesis, cell migration and angiogenesis. Sphingosine kinases (SphKs) catalyze a key step in sphingomyelin metabolism that leads to the production of S1P. There are two isoforms of SphK and observations made with SphK deficient mice show the two isoforms can compensate for each other's loss.

View Article and Find Full Text PDF

Introduction: Dysregulation of the hepatocyte growth factor (HGF)/MET pathway has been implicated in various cancers. Rilotumumab is an investigational, fully human monoclonal antibody that binds and neutralizes HGF. The purpose of this study was to evaluate the efficacy of rilotumumab in a U-87 MG mouse xenograft tumor model using (18)F-FDG and (18)F-FLT PET.

View Article and Find Full Text PDF

Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, we report the discovery of a structurally diverse series of carbon-linked quinoline triazolopyridinones, which demonstrates nanomolar inhibition of c-Met kinase activity. This novel series of inhibitors exhibits favorable pharmacokinetics as well as potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver pharmacodynamic model.

View Article and Find Full Text PDF

Deregulation of c-Met receptor tyrosine kinase activity leads to tumorigenesis and metastasis in animal models. More importantly, the identification of activating mutations in c-Met, as well as MET gene amplification in human cancers, points to c-Met as an important target for cancer therapy. We have previously described two classes of c-Met kinase inhibitors (class I and class II) that differ in their binding modes and selectivity profiles.

View Article and Find Full Text PDF

AMG 386 is an investigational first-in-class peptide-Fc fusion protein (peptibody) that inhibits angiogenesis by preventing the interaction of angiopoietin-1 (Ang1) and Ang2 with their receptor, Tie2. Although the therapeutic value of blocking Ang2 has been shown in several models of tumorigenesis and angiogenesis, the potential benefit of Ang1 antagonism is less clear. To investigate the consequences of Ang1 neutralization, we have developed potent and selective peptibodies that inhibit the interaction between Ang1 and its receptor, Tie2.

View Article and Find Full Text PDF

Hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, c-Met, have been implicated in the growth and progression of a variety of solid human tumors. Thus, inhibiting HGF/SF:c-Met signaling may provide a novel therapeutic approach for treating human tumors. We have generated and characterized fully human monoclonal antibodies that bind to and neutralize human HGF/SF.

View Article and Find Full Text PDF

Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is an attractive target for small molecule drug discovery. We previously showed that O-linked triazolopyridazines can be potent inhibitors of c-Met. Herein, we report the discovery of a related series of N-linked triazolopyridazines which demonstrate nanomolar inhibition of c-Met kinase activity and display improved pharmacodynamic profiles.

View Article and Find Full Text PDF

c-Met is a receptor tyrosine kinase frequently overexpressed or amplified in many types of human cancers. Hepatocyte growth factor (HGF, also known as scatter factor) is the only known ligand for c-Met. In this study, soluble human and murine c-Met receptor-Fc fusion proteins were generated and were shown to bind to human and murine HGF as measured by fluorescence-activated cell sorting and surface plasmon resonance (Biacore) assays.

View Article and Find Full Text PDF
Article Synopsis
  • Angiogenesis is crucial for breast cancer growth, and VEGF is a key factor regulating blood vessel formation; this study explores the effects of motesanib, a new oral inhibitor targeting multiple growth factor receptors.
  • In experiments, mice with different breast cancer tumor types were treated with varying doses of motesanib, alone or alongside chemotherapy drugs like docetaxel, doxorubicin, and tamoxifen.
  • Results showed that motesanib significantly reduces tumor growth and blood vessel density, especially when combined with docetaxel or tamoxifen, indicating its potential as an effective treatment for breast cancer.
View Article and Find Full Text PDF

c-Met is a receptor tyrosine kinase that plays a key role in several cellular processes but has also been found to be overexpressed and mutated in different human cancers. Consequently, targeting this enzyme has become an area of intense research in drug discovery. Our studies began with the design and synthesis of novel pyrimidone 7, which was found to be a potent c-Met inhibitor.

View Article and Find Full Text PDF