In stream systems, disentangling relationships between biology and flow and subsequent prediction of these relationships to unsampled streams is a common objective of large-scale ecological modeling. Often, streamflow metrics are derived from aggregating continuous streamflow records available at a subset of stream gages into long-term flow regime descriptors. Despite demonstrated value, shortcomings of these long-term approaches include spatial restriction to locations with long-term continuous flow records (commonly, biased toward larger systems) and omission of potentially ecologically important short-term (i.
View Article and Find Full Text PDFSci Total Environ
February 2022
Surface-water quality can change in response to climate perturbations, such as changes in the frequency of heavy precipitation or droughts, through direct effects, such as dilution and concentration, and through physical processes, such as bank scour. Water quality might also change through indirect mechanisms, such as changing water demand or changes in runoff interaction with organic matter on the landscape. Many studies predict future changes in water-quality related to climate changes; however, fewer studies specifically document changes in water quality related to changes in climate, and they are usually limited in geographic scope.
View Article and Find Full Text PDFPesticides are important for agriculture in the United States, and atrazine is one of the most widely used and widely detected pesticides in surface water. A better understanding of the mechanisms by which atrazine and its degradation product, deethylatrazine, increase and decrease in surface waters can help inform future decisions for water quality improvement. This study considers causal factors for trends in pesticide concentration in U.
View Article and Find Full Text PDFCausal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads.
View Article and Find Full Text PDFJ Environ Qual
September 2017
Attribution of the causes of trends in nutrient loading is often limited to correlation, qualitative reasoning, or references to the work of others. This paper represents efforts to improve causal attribution of water-quality changes. The Red River of the North basin provides a regional test case because of international interest in the reduction of total phosphorus loads and the availability of long-term total phosphorus data and ancillary geospatial data with the potential to explain changes in water quality over time.
View Article and Find Full Text PDFSci Total Environ
December 2015
Trends in pesticide concentrations in 38 major rivers of the United States were evaluated in relation to use trends for 11 commonly occurring pesticide compounds. Pesticides monitored in water were analyzed for trends in concentration in three overlapping periods, 1992-2001, 1997-2006, and 2001-2010 to facilitate comparisons among sites with variable sample distributions over time and among pesticides with changes in use during different periods and durations. Concentration trends were analyzed using the SEAWAVE-Q model, which incorporates intra-annual variability in concentration and measures of long-term, mid-term, and short-term streamflow variability.
View Article and Find Full Text PDFEnviron Sci Technol
October 2014
During the 20 years from 1992 to 2011, pesticides were found at concentrations that exceeded aquatic-life benchmarks in many rivers and streams that drain agricultural, urban, and mixed-land use watersheds. Overall, the proportions of assessed streams with one or more pesticides that exceeded an aquatic-life benchmark were very similar between the two decades for agricultural (69% during 1992-2001 compared to 61% during 2002-2011) and mixed-land-use streams (45% compared to 46%). Urban streams, in contrast, increased from 53% during 1992-2011 to 90% during 2002-2011, largely because of fipronil and dichlorvos.
View Article and Find Full Text PDF