Sialylation is an important carbohydrate modification of glycoconjugates that has been shown to modulate many cellular/molecular interactions in vertebrates. In Drosophila melanogaster (Dm), using sequence homology, several enzymes of the sialylation pathway have been cloned and their function tested in expression systems. Here we investigated whether sialic acid incorporation in cultured Dm central nervous system (CNS) neurons required endogenously expressed Dm sialic acid synthase (DmSAS).
View Article and Find Full Text PDFZebrafish (Danio rerio) is a model organism that is used to study the mechanisms and pathways of human disorders. Many dysfunctions in neurological, development, and neuromuscular systems are due to glycosylation deficiencies, but the glycoproteins involved in zebrafish embryonic development have not been established. In this study, a mass spectrometry-based glycoproteomic characterization of zebrafish embryos was performed to identify the N-linked glycoproteins and N-linked glycosylation sites.
View Article and Find Full Text PDFProtein glycosylation affects cellular functions of the central nervous system (CNS). Its deficiency leads to neurological disorders such as ataxia, paralysis, learning disability, mental retardation, and memory loss. However, the glycoproteins that are responsible for these diseases are not well characterized.
View Article and Find Full Text PDFPaucimannosidic glycans are often predominant in N-glycans produced by insect cells. However, a beta-N-acetylhexosaminidase responsible for the generation of paucimannosidic glycans in lepidopteran insect cells has not been identified. We report the purification of a beta-N-acetylhexosaminidase from the culture medium of Spodoptera frugiperda Sf9 cells (Sfhex).
View Article and Find Full Text PDFCMP-N-acetylneuraminic acid is a critical metabolite in the generation of glycoconjugates that play a role in development and other physiological processes. Whereas pathways for its generation are firmly established in vertebrates, the presence and function of the relevant synthetic enzyme in insects and other protostomes is unknown. In this study, we characterize the first functional CMP-sialic acid synthase (DmCSAS) from any protostome lineage expressed from a D.
View Article and Find Full Text PDFA novel recombinant baculovirus expression vector was used to produce His-tagged human transferrin in a transformed insect cell line (Tn5beta4GalT) that constitutively expresses a mammalian beta-1,4-galactosyltransferase. This virus encoded the His-tagged human transferrin protein in conventional fashion under the control of the very late polyhedrin promoter. In addition, to enhance the synthesis of galactosylated biantennary N-glycans, this virus encoded human beta-1,2- N-acetylglucosaminyltransferase II under the control of an immediate-early (ie1) promoter.
View Article and Find Full Text PDFIn this study, we report the first cloning and characterization of a N-acetylneuraminic acid phosphate synthase gene from Drosophila melanogaster, an insect in the protostome lineage. The gene is ubiquitously expressed at all stages of Drosophila development and in Schneider cells. Similar to the human homologue, the gene encodes an enzyme with dual substrate specificity that can use either N-acetylmannosamine 6-phosphate or mannose 6-phosphate to generate phosphorylated forms of both the sialic acids, N-acetylneuraminic acid and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, respectively, when expressed in either bacterial or baculoviral expression systems.
View Article and Find Full Text PDF