Resistance towards known antimalarial drugs poses a significant problem, urging for novel drugs that target vital proteins in the malaria parasite Plasmodium falciparum. However, recombinant production of malaria proteins is notoriously difficult. To address this, we have investigated two putative K channels, PfKch1 and PfKch2, identified in the P.
View Article and Find Full Text PDFThe sparse number of high-resolution human membrane protein structures severely restricts our comprehension of molecular physiology and ability to exploit rational drug design. In the search for a standardized, cheap and easily handled human membrane protein production platform, we thoroughly investigated the capacity of S. cerevisiae to deliver high yields of prime quality human AQPs, focusing on poorly characterized members including some previously shown to be difficult to isolate.
View Article and Find Full Text PDFBackground: To prevent joint damage among patients with rheumatoid arthritis (RA), there is a need to minimize delays from the onset of symptoms until the initiation of appropriate therapy. The present study explored the factors that have an impact on the time it takes for Danish patients with RA to approach their general practitioner (GP) with joint pain, and also how GPs respond to patients' complaints.
Methods: The study was based on qualitative data collected using 11 semi-structured individual interviews.
The hERG potassium channel is essential for repolarization of the cardiac action potential. Due to this vital function, absence of unintended and potentially life-threatening interactions with hERG is required for approval of new drugs. The structure of hERG is therefore one of the most sought-after.
View Article and Find Full Text PDFBackground: In mammalian cells, ASPL is involved in insulin-stimulated redistribution of the glucose transporter GLUT4 and assembly of the Golgi apparatus. Its putative yeast orthologue, Ubx4, is important for proteasome localization, endoplasmic reticulum-associated protein degradation (ERAD), and UV-induced degradation of RNA polymerase.
Results: Here, we show that ASPL is a cofactor of the hexameric ATPase complex, known as p97 or VCP in mammals and Cdc48 in yeast.