Unlabelled: Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME).
Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing.
Purpose: Inadequate mechanical stimuli are a major cause for nonunions following surgery for femoral and tibial shaft fractures. Adapting fixation rigidity during the course of fracture healing requires additional surgery. Nickel-titanium (NiTi) implants can change shape and rigidity by employing a temperature-dependent shape-memory effect.
View Article and Find Full Text PDFHypertropic and keloid scars cause both functional and cosmetic problems for those afflicted. Although people of all ages suffer from these conditions, the patients are often young and otherwise healthy, and become burdened with an activity limiting lesion or psychosocial stresses associated with a perceived aesthetic defect. Currently available treatment modalities are often inconvenient, occasionally painful, and have unwanted side effects.
View Article and Find Full Text PDFEvery year, millions of people experience burns, suffer from nonhealing wounds, or have acute wounds that become complicated by infection, dehiscence or problematic scarring. Effective wound treatment requires carefully considered interventions often requiring multiple clinic or hospital visits. The resulting costs of wound care are staggering, and more efficacious and cost-effective therapies are needed to decrease this burden.
View Article and Find Full Text PDF