Unlabelled: The understanding of adhesive interaction at the nanoscale between functionalized nanoparticles and biological cells is of great importance to develop effective theranostic nanocarriers for targeted cancer therapy. Here, we report a combination of experimental and computational approaches to evaluate the adhesion between Triptorelin (a Luteinizing Hormone-Releasing Hormone (LHRH) agonist)-conjugated poly-(ethylene glycol) (PEG)-coated magnetite nanoparticles (Triptorelin-MNPs) and breast cells. The adhesion forces between Triptorelin-MNPs and normal/cancerous breast cells are obtained using atomic force microscopy.
View Article and Find Full Text PDFThis paper presents the results of an experimental study of the adhesion forces between components of model conjugated magnetite nanoparticle systems for improved selectivity in the specific targeting of triple negative breast cancer. Adhesion forces between chemically synthesized magnetite nanoparticles (CMNPs), biosynthesized magnetite nanoparticles (BMNPs), as well as their conjugated systems and triple negative breast cancer cells (MDA-MB-231) or normal breast cells (MCF 10A) are elucidated at a nanoscale. In all cases, the BMNPs had higher adhesion forces (to breast cancer cells and normal breast cells) than CMNPs.
View Article and Find Full Text PDFThe ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements.
View Article and Find Full Text PDF