Publications by authors named "Karen Magliano"

UNMIX and Positive Matrix Factorization (PMF) solutions to the Chemical Mass Balance (CMB) equations were applied to chemically speciated PM2.5 measurements from 23 sites in California's San Joaquin Valley to estimate source contributions. Six and seven factors were determined by UNMIX for the low_PM2.

View Article and Find Full Text PDF

The duration, strength, spatial extent, and chemical makeup of particulate matter (PM) are compared for two winter air quality episodes captured during the California Regional Particulate Air Quality Study (CRPAQS). Each episode, from the beginning of the buildup through dissolution, lasted about 3 weeks. The first episode occurred from December 14, 1999, through January 1, 2000, with peak 24-hr average fine particulate matter (PM2.

View Article and Find Full Text PDF

Particle light scattering (Bsp) from nephelometers and fine particulate matter (PM2.5) mass determined by filter samplers are compared for summer and winter at 35 locations in and around California's San Joaquin Valley from December 2, 1999 to February 3, 2001. The relationship is described using particle mass scattering efficiency (sigmasp) derived from linear regression of Bsp on PM2.

View Article and Find Full Text PDF

Evaporative loss of particulate matter (with aerodynamic diameter < 2.5 microm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California.

View Article and Find Full Text PDF

Aerosol carbon sampling methods and biases were evaluated during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) and Fresno Supersite programs. PM2.

View Article and Find Full Text PDF

The 1995 Integrated Monitoring Study (IMS95) is part of the Phase 1 planning efforts for the California Regional PMPM Air Quality Study. Thus, the overall objectives of IMS95 are to (1) fill information gaps needed for planning an effective field program later this decade; (2) develop an improved conceptual model for pollution buildup (PM10, PM2.5, and aerosol precursors) in the San Joaquin Valley; (3) develop a uniform air quality, meteorological, and emissions database that can be used to perform initial evaluations of aerosol and fog air quality models; and (4) provide early products that can be used to help with the development of State Implementation Plans for PM Consideration of the new particulate matter standards were also included in the planning and design of IMS95, although they were proposed standards when IMS95 was in the planning process.

View Article and Find Full Text PDF

The spatial and temporal distributions of particle mass and its chemical constituents are essential for understanding the source-receptor relationships as well as the chemical, physical, and meteorological processes that result in elevated particulate concentrations in California's San Joaquin Valley (SJV). Fine particulate matter PM coarse particulate matter (PM), and aerosol precursor gases were sampled on a 3-hr time base at two urban (Bakersfield and Fresno) and two non-urban (Kern Wildlife Refuge and Chowchilla) core sites in the SJV during the winter of 1995-1996. Day-to-day variations of PM and PM and their chemical constituents were influenced by the synoptic-scale meteorology and were coherent among the four core sites.

View Article and Find Full Text PDF