Background: With ongoing anthropogenic climate change, there is increasing interest in how organisms are affected by higher temperatures, including how animals respond behaviorally to increasing temperatures. Movement behavior is especially relevant, as the ability of a species to shift its range is implicitly dependent upon movement capacity and motivation. Temperature may influence movement behavior of ectotherms both directly, through an increase in body temperature, and indirectly, through temperature-dependent effects on physiological and morphological traits.
View Article and Find Full Text PDFUrban development can fragment and degrade remnant habitat. Such habitat alterations can have profound impacts on wildlife, including effects on population density, parasite infection status, parasite prevalence, and body condition. We investigated the influence of urbanization on populations of Merriam's kangaroo rat () and their parasites.
View Article and Find Full Text PDFUrbanization fragments landscapes and can impede the movement of organisms through their environment, which can decrease population connectivity. Reduction in connectivity influences gene flow and allele frequencies, and can lead to a reduction in genetic diversity and the fixation of certain alleles, with potential negative effects for populations. Previous studies have detected effects of urbanization on genetic diversity and structure in terrestrial animals living in landscapes that vary in their degree of urbanization, even over very short distances.
View Article and Find Full Text PDFIntroduction: Hantaviruses are a group of globally distributed rodent-associated viruses, some of which are responsible for human morbidity and mortality. Sin Nombre orthohantavirus, a particularly virulent species of hantavirus associated with Peromyscus spp. mice, is actively monitored by the Department of Public Health in California (CDPH).
View Article and Find Full Text PDFFor organisms with complex life cycles, climate change can have both direct effects and indirect effects that are mediated through plastic responses to temperature and that carry over beyond the developmental environment. We examined multiple responses to environmental warming in a dragonfly, a species whose life history bridges aquatic and terrestrial environments. We tested larval survival under warming and whether warmer conditions can create carry-over effects between life history stages.
View Article and Find Full Text PDFAdults sometimes disperse, while philopatric offspring inherit the natal site, a pattern known as . Despite a decades-old empirical literature, little theoretical work has explored when natural selection may favor bequeathal. We present a simple mathematical model of the evolution of bequeathal in a stable environment, under both global and local dispersal.
View Article and Find Full Text PDF1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life-history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, while phenology can shape population performance and community interactions.
View Article and Find Full Text PDFThe northern salt marsh harvest mouse (Reithrodontomys raviventris halicoetes) is an endangered species endemic to the San Francisco Bay Estuary. Using a conservation behavior perspective, we examined how salt marsh harvest mice cope with both natural (daily tidal fluctuations) and anthropogenic (modification of tidal regime) changes in natural tidal wetlands and human-created diked wetlands, and investigated the role of behavioral flexibility in utilizing a human-created environment in the Suisun Marsh. We used radio telemetry to determine refuge use at high tide, space use, and movement rates to investigate possible differences in movement behavior in tidal versus diked wetlands.
View Article and Find Full Text PDFThe hypothesis that patterns of sex-biased dispersal are related to social mating system in mammals and birds has gained widespread acceptance over the past 30 years. However, two major complications have obscured the relationship between these two behaviors: 1) dispersal frequency and dispersal distance, which measure different aspects of the dispersal process, have often been confounded, and 2) the relationship between mating system and sex-biased dispersal in these vertebrate groups has not been examined using modern phylogenetic comparative methods. Here, we present a phylogenetic analysis of the relationship between mating system and sex-biased dispersal in mammals and birds.
View Article and Find Full Text PDFRecent discoveries of single-gene influences on social behaviour have generated a great deal of interest in the proximate mechanisms underlying the expression of complex behaviours. Length polymorphism in a microsatellite in the regulatory region of the gene encoding the vasopressin 1a receptor (avpr1a) has been associated with both inter- and intra-specific variation in socially monogamous behaviour in voles (genus Microtus) under laboratory conditions. Here, we evaluate the relationship between avpr1a length polymorphism and social associations, genetic monogamy, and reproductive success in free-living prairie vole (M.
View Article and Find Full Text PDFNatal dispersal occurs when young animals leave the area where they were born and reared and search the surrounding landscape for a new place to settle. Despite the importance of dispersal for both individuals and populations, search behavior by dispersers, including the decision-making process of choosing a place to settle, has not been investigated in the field. Here we draw on the mate search literature, in which the theory of decision making during search has been well developed, and ask whether there are behavioral similarities between habitat search and mate search.
View Article and Find Full Text PDFDuring natal dispersal, young animals leave their natal area and search for a new area to live. In species in which individuals inhabit different types of habitat, experience with a natal habitat may increase the probability that a disperser will select the same type of habitat post-dispersal (natal habitat preference induction or NHPI). Despite considerable interest in the ecological and the evolutionary implications of NHPI, we lack empirical evidence that it occurs in nature.
View Article and Find Full Text PDF