For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases.
View Article and Find Full Text PDFAerosp Med Hum Perform
March 2024
Real-time cardiovascular imaging during hypergravity exposure has been historically limited by technological and physical challenges. Previous efforts at sonographic hypergravity imaging have used fixed ultrasound probes; the use of hand-held ultrasound, particularly performed by minimally trained laypersons, has been less explored. Here we will discuss handheld sonography to self-visualize carotid vascular and cardiac changes during hypergravity.
View Article and Find Full Text PDFAerosp Med Hum Perform
August 2023
Prior study has indicated that individuals of varied age, medical history, and limited-to-no experience tolerate spaceflight conditions. We sought to expand upon the understanding of layperson response to hypergravity conditions expected in commercial spaceflight by exposing subjects, following minimal training, to centrifuge-simulated, high-fidelity commercial spaceflight profiles. We further explored how these individuals perform in simulated operational activities during and following hypergravity.
View Article and Find Full Text PDFAerosp Med Hum Perform
September 2022
Sympathetic stimulation is known to be associated with transient alterations of blood glucose (BG) concentration; spaceflight acceleration may be similarly associated with alterations of BG, potentially posing a risk to diabetic individuals engaging in future spaceflight activities. Despite prior studies demonstrating diabetic subjects' tolerance to centrifuge-simulated spaceflight, data are lacking regarding blood glucose response to hypergravity. It remains unclear whether hypergravity or associated physiological response may pose a risk to diabetics.
View Article and Find Full Text PDFWidespread use of antibiotics has resulted in an increase in antimicrobial-resistant microorganisms. Although not all bacterial contact results in infection, patients can become asymptomatically colonized, increasing the risk of infection and pathogen transmission. Consequently, many institutions have begun active surveillance, but in non-research settings, the resulting data are often incomplete and may include non-random testing, making conventional epidemiological analysis problematic.
View Article and Find Full Text PDFThe different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system, we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression.
View Article and Find Full Text PDFThe steady state dose-response curve of ligand-mediated gene induction usually appears to precisely follow a first-order Hill equation (Hill coefficient equal to 1). Additionally, various cofactors/reagents can affect both the potency and the maximum activity of gene induction in a gene-specific manner. Recently, we have developed a general theory for which an unspecified sequence of steps or reactions yields a first-order Hill dose-response curve (FHDC) for plots of the final product versus initial agonist concentration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2010
Ligand-mediated gene induction by steroid receptors is a multistep process characterized by a dose-response curve for gene product that follows a first-order Hill equation. This behavior has classically been explained by steroid binding to receptor being the rate-limiting step. However, this predicts a constant potency of gene induction (EC(50)) for a given receptor-steroid complex, which is challenged by the findings that various cofactors/reagents can alter this parameter in a gene-specific manner.
View Article and Find Full Text PDF