Plants regulate gene expression at the transcriptional and post-transcriptional levels to produce a variety of functionally diverse cells and tissues that ensure normal growth, development, and environmental response. Although distinct gene expression patterns have been characterized between different plant tissues, the specific role of transcriptional regulation of tissue-specific expression is not well-characterized in plants. RNA-seq, while widely used to assay for changes in transcript abundance, does not discriminate between differential expression caused by mRNA degradation and active transcription.
View Article and Find Full Text PDFPlants respond to abiotic stress stimuli, such as water deprivation, through a hierarchical cascade that includes detection and signaling to mediate transcriptional and physiological changes. The phytohormone abscisic acid (ABA) is well-characterized for its regulatory role in these processes in response to specific environmental cues. ABA-mediated changes in gene expression have been demonstrated to be temporally-dependent, however, the genome-wide timing of these responses are not well-characterized in the agronomically important crop plant (maize).
View Article and Find Full Text PDFBased on recent findings, long noncoding (lnc) RNAs represent a potential class of functional molecules within the cell. In this chapter we describe a computational scheme to identify and classify lncRNAs within maize from full-length cDNA sequences to designate subsets of lncRNAs for which biogenesis and regulatory mechanisms may be verified at the bench. We make use of the Coding Potential Calculator and specific Python scripts in our approach.
View Article and Find Full Text PDFPlants are subjected to extreme environmental conditions and must adapt rapidly. The phytohormone abscisic acid (ABA) accumulates during abiotic stress, signaling transcriptional changes that trigger physiological responses. Epigenetic modifications often facilitate transcription, particularly at genes exhibiting temporal, tissue-specific and environmentally-induced expression.
View Article and Find Full Text PDFChromatin remodelers alter DNA-histone interactions in eukaryotic organisms and have been well characterized in yeast and Arabidopsis. While there are maize proteins with similar domains as known remodelers, the ability of the maize proteins to alter nucleosome position has not been reported. Mutant alleles of several maize proteins (RMR1, CHR101, CHR106, CHR127, and CHR156) with similar functional domains to known chromatin remodelers were identified.
View Article and Find Full Text PDFWith the emergence of massively parallel sequencing, genomewide expression data production has reached an unprecedented level. This abundance of data has greatly facilitated maize research, but may not be amenable to traditional analysis techniques that were optimized for other data types. Using publicly available data, a gene coexpression network (GCN) can be constructed and used for gene function prediction, candidate gene selection, and improving understanding of regulatory pathways.
View Article and Find Full Text PDFBased on recent findings, long noncoding (lnc) RNAs represent a potential class of functional molecules within the cell. In this chapter we describe a computational scheme to identify and classify lncRNAs within maize from full-length cDNA sequences to designate subsets of lncRNAs for which biogenesis and regulatory mechanisms may be verified at the bench. We make use of the Coding Potential Calculator and specific Python scripts in our approach.
View Article and Find Full Text PDFThe maize genome is relatively large (∼ 2.3 Gb) and has a complex organization of interspersed genes and transposable elements, which necessitates frequent boundaries between different types of chromatin. The examination of maize genes and conserved noncoding sequences revealed that many of these are flanked by regions of elevated asymmetric CHH (where H is A, C, or T) methylation (termed mCHH islands).
View Article and Find Full Text PDFParamutation is a fascinating phenomenon in which directed allelic interactions result in heritable changes in the state of an allele. Paramutation has been carefully characterized at a handful of loci but the prevalence of paramutable/paramutagenic alleles is not well characterized within genomes or populations. In order to consider the role of paramutation in evolutionary processes and plant breeding, we focused on several questions.
View Article and Find Full Text PDFDNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles.
View Article and Find Full Text PDFRNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2. The data revealed that the majority of the genome exists in a heterochromatic state defined by inaccessible chromatin that is marked by H3K9me2 and H3K27me2 but that lacks RdDM.
View Article and Find Full Text PDFThe eukaryotic genome is organized into nucleosomes, the fundamental units of chromatin. The positions of nucleosomes on DNA regulate protein-DNA interactions and in turn influence DNA-templated events. Despite the increasing number of genome-wide maps of nucleosome position, how global changes in gene expression relate to changes in nucleosome position is poorly understood.
View Article and Find Full Text PDFIn Zea mays, transcriptional regulation of the b1 (booster1) gene requires a distal enhancer and MEDIATOR OF PARAMUTATION1 (MOP1), MOP2, and MOP3 proteins orthologous to Arabidopsis components of the RNA-dependent DNA methylation pathway. We compared the genetic requirements for MOP1, MOP2, and MOP3 for endogenous gene silencing by two hairpin transgenes with inverted repeats of the a1 (anthocyaninless1) gene promoter (a1pIR) and the b1 gene enhancer (b1IR), respectively. The a1pIR transgene induced silencing of endogenous A1 in mop1-1 and mop3-1, but not in Mop2-1 homozygous plants.
View Article and Find Full Text PDFThough the mechanisms governing nuclear organization are not well understood, it is apparent that epigenetic modifications coordinately modulate chromatin organization as well as transcription. In maize, MEDIATOR OF PARAMUTATION1 (MOP1) is required for 24 nt siRNA-mediated epigenetic regulation and transcriptional gene silencing via a putative Pol IV- RdDM pathway. To elucidate the mechanisms of nuclear chromatin organization, we investigated the relationship between chromatin structure and transcription in response to loss of MOP1 function.
View Article and Find Full Text PDFThe nucleosome is a fundamental structural and functional chromatin unit that affects nearly all DNA-templated events in eukaryotic genomes. It is also a biochemical substrate for higher order, cis-acting gene expression codes and the monomeric structural unit for chromatin packaging at multiple scales. To predict the nucleosome landscape of a model plant genome, we used a support vector machine computational algorithm trained on human chromatin to predict the nucleosome occupancy likelihood (NOL) across the maize (Zea mays) genome.
View Article and Find Full Text PDFNucleosomes facilitate compaction of DNA within the confines of the eukaryotic nucleus. This packaging of DNA and histone proteins must accommodate cellular processes, such as transcription and DNA replication. The repositioning of nucleosomes to facilitate cellular processes is likely regulated by several factors.
View Article and Find Full Text PDFTransposable elements (TEs) have the potential to act as controlling elements to influence the expression of genes and are often subject to heterochromatic silencing. The current paradigm suggests that heterochromatic silencing can spread beyond the borders of TEs and influence the chromatin state of neighboring low-copy sequences. This would allow TEs to condition obligatory or facilitated epialleles and act as controlling elements.
View Article and Find Full Text PDFBackground: Computational analysis of cDNA sequences from multiple organisms suggests that a large portion of transcribed DNA does not code for a functional protein. In mammals, noncoding transcription is abundant, and often results in functional RNA molecules that do not appear to encode proteins. Many long noncoding RNAs (lncRNAs) appear to have epigenetic regulatory function in humans, including HOTAIR and XIST.
View Article and Find Full Text PDFTranscriptional gene silencing is a gene regulatory mechanism essential to all organisms. Many transcriptional regulatory mechanisms are associated with epigenetic modifications such as changes in chromatin structure, acetylation and methylation of core histone proteins, and DNA methylation within regulatory regions of endogenous genes and transgenes. Although several maize mutants have been identified from prior forward genetic screens for epigenetic transcriptional silencing, these screens have been far from saturated.
View Article and Find Full Text PDFRNAi refers to several different types of gene silencing mediated by small, dsRNA molecules. Over the course of 20 years, the scientific understanding of RNAi has developed from the initial observation of unexpected expression patterns to a sophisticated understanding of a multi-faceted, evolutionarily conserved network of mechanisms that regulate gene expression in many organisms. It has also been developed as a genetic tool that can be exploited in a wide range of species.
View Article and Find Full Text PDFAlternative splicing (AS) creates multiple mRNA transcripts from a single gene. While AS is known to contribute to gene regulation and proteome diversity in animals, the study of its importance in plants is in its early stages. However, recently available plant genome and transcript sequence data sets are enabling a global analysis of AS in many plant species.
View Article and Find Full Text PDFPlants with mutations in one of three maize genes, mop1, rmr1, and rmr2, are defective in paramutation, an allele-specific interaction that leads to meiotically heritable chromatin changes. Experiments reported here demonstrate that these genes are required to maintain the transcriptional silencing of two different transgenes, suggesting that paramutation and transcriptional silencing of transgenes share mechanisms. We hypothesize that the transgenes are silenced through an RNA-directed chromatin mechanism, because mop1 encodes an RNA-dependent RNA polymerase.
View Article and Find Full Text PDFThis article reports the genetic interaction of two F-box genes, SLEEPY1 (SLY1) and SNEEZY (SNE), in Arabidopsis thaliana gibberellin (GA) signaling. The SLY1 gene encodes an F-box subunit of a Skp1-cullin-F-box (SCF) E3 ubiquitin ligase complex that positively regulates GA signaling. The sly1-2 and sly1-10 mutants have recessive, GA-insensitive phenotypes including delayed germination, dwarfism, reduced fertility, and overaccumulation of the DELLA proteins RGA (Repressor of ga1-3), GAI (GA-Insensitive), and RGL2 (RGA-Like 2).
View Article and Find Full Text PDFLeiomyosarcoma of the mediastinum is sufficiently rare; therefore therapeutic approaches are not well defined. Current therapy primarily rests with the thoracic surgeon. We report a single case of a large leiomyosarcoma of the mediastinum invading the heart and right lung.
View Article and Find Full Text PDFThe Arabidopsis SLY1 (SLEEPY1) gene positively regulates gibberellin (GA) signaling. Positional cloning of SLY1 revealed that it encodes a putative F-box protein. This result suggests that SLY1 is the F-box subunit of an SCF E3 ubiquitin ligase that regulates GA responses.
View Article and Find Full Text PDF