Knowledge gaps persist on signaling pathways and metabolic states in germ cells sufficient to support spermatogenesis independent of a somatic environment. Consequently, methods to culture mammalian stem cells through spermatogenesis in defined systems have not been established. Lack of success at culturing mammalian stem cells through spermatogenesis in defined systems reflects an inability to experimentally recapitulate biochemical events that develop in germ cells within the testis-specific seminiferous epithelium.
View Article and Find Full Text PDFIn adult males, spermatogonia maintain lifelong spermatozoa production for oocyte fertilization. To understand spermatogonial metabolism we compared gene profiles in rat spermatogonia to publicly available mouse, monkey, and human spermatogonial gene profiles. Interestingly, rat spermatogonia expressed metabolic control factors , , and Germline Foxa2 was enriched in Gfra1 and Gfra1 undifferentiated A-single spermatogonia.
View Article and Find Full Text PDFDefined culture systems supporting spermatogonial differentiation will provide experimental platforms to study spermatogenesis. However, germline-intrinsic signaling mechanisms sufficient to support spermatogonial differentiation without somatic cells remain largely undefined. Here, we analyzed EGF superfamily receptor and ligand diversity in rat testis cells, and delineated germline-intrinsic signaling an ERBB3 co-transducer, ERBB2, as essential for retinoic acid-induced syncytial growth by differentiating spermatogonia.
View Article and Find Full Text PDFOrganisms with targeted genomic modifications are efficiently produced by gene editing in embryos using CRISPR/Cas9 RNA-guided DNA endonuclease. Here, to facilitate germline editing in rats, we used CRISPR/Cas9 to catalyze targeted genomic mutations in rat spermatogonial stem cell cultures. CRISPR/Cas9-modified spermatogonia regenerated spermatogenesis and displayed long-term sperm-forming potential following transplantation into rat testes.
View Article and Find Full Text PDFIn mammalian testes, "A-single" spermatogonia function as stem cells that sustain sperm production for fertilizing eggs. Yet, it is not understood how cellular niches regulate the developmental fate of A-single spermatogonia. Here, immunolabeling studies in rat testes define a novel population of ERBB3(+) germ cells as approximately 5% of total SNAP91(+) A-single spermatogonia along a spermatogenic wave.
View Article and Find Full Text PDFSpermiogenesis is a postmeiotic process that drives development of round spermatids into fully elongated spermatozoa. Spermatid elongation is largely controlled post-transcriptionally after global silencing of mRNA synthesis from the haploid genome. Here, rats that differentially express EGFP from a lentiviral transgene during early and late steps of spermiogenesis were used to flow sort fractions of round and elongating spermatids.
View Article and Find Full Text PDFWe describe an experimental approach for generating mutant alleles in rat spermatogonial stem cells (SSCs) using Sleeping Beauty (SB) transposon-mediated insertional mutagenesis. The protocol is based on mobilization of mutagenic gene-trap transposons from transfected plasmid vectors into the genomes of cultured stem cells. Cells with transposon insertions in expressed genes are selected on the basis of activation of an antibiotic-resistance gene encoded by the transposon.
View Article and Find Full Text PDFSince several aspects of physiology in rats have evolved to be more similar to humans than that of mice, it is highly desirable to link the rat into the process of annotating the human genome with function. However, the lack of technology for generating defined mutants in the rat genome has hindered the identification of causative relationships between genes and disease phenotypes. As an important step towards this goal, an approach of establishing transposon-mediated insertional mutagenesis in rat spermatogonial stem cells was recently developed.
View Article and Find Full Text PDFDisrupting genes in the rat on a genome-wide scale will allow the investigation of many biological processes linked to human health. Here we used transposon-mediated mutagenesis to knock out genes in rat spermatogonial stem cells. Given the capacity of the testis to support spermatogenesis from thousands of transplanted, genetically manipulated spermatogonia, this approach paves a way for high-throughput functional genomic studies in the laboratory rat.
View Article and Find Full Text PDFDespite remarkable advances in assisted reproductive capabilities approximately 4% of all couples remain involuntarily infertile. In almost half of these cases, a lack of conception can in some measure be attributed to the male partner, wherein de novo Y-chromosomal deletions of sperm-specific Deleted-in-Azoospermia (DAZ) genes are particularly prevalent. In the current study, long-term cultures of rat spermatogonial stem cells were evaluated after cryo-storage for their potential to restore fertility to rats deficient in the DAZ-like (DAZL) gene.
View Article and Find Full Text PDFAn economical and simplified procedure to derive and propagate fully functional lines of undifferentiated rat spermatogonia in vitro is presented. The procedure is based on the formulation of a new spermatogonial culture medium termed SG medium. The SG medium is composed of a 1:1 mixture of Dulbecco modified Eagle medium:Ham F12 nutrient, 20 ng/ml of GDNF, 25 ng/ml of FGF2, 100 microM 2-mercaptoethanol, 6 mM l-glutamine, and a 1x concentration of B27 Supplement Minus Vitamin A solution.
View Article and Find Full Text PDFMethods are detailed for isolating highly pure populations of spermatogonial stem cells from primary cultures of testis cells prepared from 22- to 24-day-old rats. The procedure is based on the principle that testicular somatic cells bind tightly to plastic and collagen matrices when cultured in serum-containing medium, whereas spermatogonia and spermatocytes do not bind to plastic or collagen when cultured in serum-containing medium. The collagen-non-binding testis cells obtained using these procedures are thus approx.
View Article and Find Full Text PDFThe spermatogenesis and oogenesis-specific transcription factor Sohlh2 is normally expressed only in premeiotic germ cells. In this study, Sohlh2 and several other germ cell transcripts were found to be induced in mouse embryonic stem cells when cultured on a feeder cell line that overexpresses bone morphogenetic protein 4. To study the function of Sohlh2 in germ cells, we generated mice harboring null alleles of Sohlh2.
View Article and Find Full Text PDFIn the absence of somatic cells, medium conditioned by the SNL fibroblast line (SNL-CM) is able to stimulate primary cultures of rat type-A single spermatogonia to develop into chains of aligned spermatogonia at the 8-, 16-, and 32-cell stages. By comparison, medium conditioned by an MSC-1 Sertoli cell line is ineffective. Glial cell line-derived neurotrophic factor (GDNF)-like molecules were identified in SNL-CM and recombinant forms of GDNF, neurturin, and artemin were shown to stimulate formation of aligned spermatogonia, but principally to only the 4- and 8-cell stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2005
The use of a transgenic line of rats that express enhanced GFP (EGFP) exclusively in the germ line has allowed a separation of feeder layers and contaminating testis somatic cells from germ cells and the identification of a set of spermatogonial stem cell marker transcripts. With these molecular markers as a guide, we have now devised culture conditions where rat spermatogonial stem cells renew and proliferate in culture with a doubling time between 3 and 4 days. The marker transcripts increase in relative abundance as a function of time in culture, and the stem cells retain competency to colonize and develop into spermatids after transplantation to the testes of recipient rats.
View Article and Find Full Text PDFThrough the use of donor cells from transgenic rats expressing GFP exclusively in the germline, we have defined culture conditions where male germ cells lose (on STO cells) or maintain (on MSC-1 cells) stem cell activity. A cadre of germ cell transcripts strikingly decrease in relative abundance as a function of testis age or culture time on STO cells, but only a subset of these transcripts (approximately 248) remain elevated when cultured on MSC-1 cells. If specific gene expression regulates stem cell activity, some or all of these transcripts are candidates as such regulators.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2002
Primary cultures of rat spermatogenic cells that did not bind to collagen matrices were able to colonize and form mature spermatozoa when transferred to testes of recipient males. Up to 73% of the progeny from matings with recipient males were derived from the transferred spermatogenic cells. Subsequently, two populations of germ cells were obtained by selection on laminin matrices.
View Article and Find Full Text PDF