Publications by authors named "Karen Leander"

Objective: To investigate serum protein expression in participants with psoriatic arthritis (PsA) and changes after guselkumab treatment.

Methods: Participants with PsA were treated with guselkumab or placebo in the DISCOVER-1 and DISCOVER-2 studies. Serum levels of acute phase reactants C reactive protein (CRP) and serum amyloid A (SAA) and inflammatory cytokines/chemokines were measured at weeks 0, 4 and 24 in 300 study participants and 34 healthy controls (HCs).

View Article and Find Full Text PDF

Although CD3 T cell redirecting antibodies have been successfully utilized for the treatment of hematological malignancies (blinatumomab), the T cell signaling pathways induced by these molecules are incompletely understood. To gain insight into the mechanism of action for T cell redirection antibodies, we created a novel murine CD3xEpCAM bispecific antibody that incorporates a silent Fc to dissect function and signaling of murine CD8 OT1 T cells upon stimulation. T cell-mediated cytotoxicity, cytokine secretion, expression of activation markers, and proliferation were directly induced in T cells treated with the novel CD3xEpCAM bispecific molecule in the presence of epithelial cell adhesion molecule (EpCAM) expressing tumor cells.

View Article and Find Full Text PDF

T cell expression of TIM-3 following Ag encounter has been associated with a continuum of functional states ranging from effector memory T cells to exhaustion. We have designed an in vitro culture system to specifically address the impact of anti-TIM-3/TIM-3 engagement on human Ag-specific CD8 T cells during a normal response to Ag and found that anti-TIM-3 treatment enhances T cell function. In our in vitro T cell culture system, MART1-specific CD8 T cells were expanded from healthy donors using artificial APCs.

View Article and Find Full Text PDF

Haemophilia A and B are characterised by a life-long bleeding predisposition, and several lines of evidence suggest that risks of atherothrombotic events may also be reduced. Establishing a direct correlation between coagulation factor levels, thrombotic risks and bleeding propensity has long been hampered by an inability to selectively and specifically inhibit coagulation factor levels. Here, the exquisite selectivity of gene silencing combined with a gene knockout (KO) approach was used to define the relative contribution of factor IX (fIX) to thrombosis and primary haemostasis in the rat.

View Article and Find Full Text PDF

The present study aimed at establishing feasibility of delivering short interfering RNA (siRNA) to target the coagulation cascade in rat and rabbit, two commonly used species for studying thrombosis and hemostasis. siRNAs that produced over 90% mRNA knockdown of rat plasma prekallikrein and rabbit Factor X (FX) were identified from in vitro screens. An ionizable amino lipid based lipid nanoparticle (LNP) formulation for siRNA in vivo delivery was characterized as tolerable and exerting no appreciable effect on coagulability at day 7 postdosing in both species.

View Article and Find Full Text PDF

The application of small interfering (si)RNAs as potential therapeutic agents requires safe and effective methods for their delivery to the cytoplasm of the target cells and tissues. Recent studies have shown significant progress in the development of targeting reagents that facilitate the recognition of, and siRNA delivery to, specific cell types. Among recently reported delivery approaches, polymers with amphipathic properties have been used to enable endosome escape and cytosolic delivery.

View Article and Find Full Text PDF

A series of amphiphilic, biodegradable polypeptide copolymers were prepared for the delivery of siRNA (short interfering ribonucleic acid). The molecular weight (or polymer chain length) of the linear polymer was controlled by reaction stoichiometry for the 11.5, 17.

View Article and Find Full Text PDF

Efficient siRNA delivery is dependent not only on the ability of the delivery vehicle to target a specific organ but also on its ability to enable siRNA entry into the cytoplasm of the target cells. Polymers with endosomolytic properties are increasingly being used as siRNA delivery vehicles due to their potential to facilitate endosomal escape and intracellular delivery. Addition of disulfide bonds in the backbone of these polymers was expected to provide degradability through reduction by glutathione in cytosol.

View Article and Find Full Text PDF

Chemically stabilized small interfering RNA (siRNA) can be delivered systemically by intravenous injection of lipid nanoparticles (LNPs) in rodents and primates. The biodistribution and kinetics of LNP-siRNA delivery in mice at organ and cellular resolution have been studied using immunofluorescence (IF) staining and quantitative polymerase chain reaction (qPCR). At 0.

View Article and Find Full Text PDF

Background: In recent years, there has been an increasing interest in targeting human prostate tumor-associated antigens (TAAs) for prostate cancer immunotherapy as an alternative to other therapeutic modalities. However, immunologic tolerance to TAA poses a significant obstacle to effective, TAA-targeted immunotherapy. We sought to investigate whether androgen deprivation would result in circumventing immune tolerance to prostate TAA by impacting CD8 cell responses.

View Article and Find Full Text PDF

The PI3K-Akt pathway is dysregulated in the majority of solid tumors. Pharmacological inhibition of Akt is a promising strategy for treating tumors resistant to growth factor receptor antagonists due to mutations in PI3K or PTEN. We have developed allosteric, isozyme-specific inhibitors of Akt activity and activation, as well as ex vivo kinase assays to measure inhibition of individual Akt isozymes in tissues.

View Article and Find Full Text PDF

A series of [1,2,4]triazolo[3,4-f][1,6]naphthyridine allosteric dual inhibitors of Akt1 and 2 have been developed. These compounds have been shown to have potent dual Akt1 and 2 cell potency. The representative compound 13 provided potent inhibitory activity against Akt1 and 2 in vivo in a mouse model.

View Article and Find Full Text PDF

Background: Dysregulated PI3K/Akt signaling occurs commonly in breast cancers and is due to HER2 amplification, PI3K mutation or PTEN inactivation. The objective of this study was to determine the role of Akt activation in breast cancer as a function of mechanism of activation and whether inhibition of Akt signaling is a feasible approach to therapy.

Methodology/principal Findings: A selective allosteric inhibitor of Akt kinase was used to interrogate a panel of breast cancer cell lines characterized for genetic lesions that activate PI3K/Akt signaling: HER2 amplification or PI3K or PTEN mutations in order to determine the biochemical and biologic consequences of inhibition of this pathway.

View Article and Find Full Text PDF

A series of naphthyridine and naphthyridinone allosteric dual inhibitors of Akt1 and 2 have been developed. These compounds have been optimized to have potent dual activity against the activated kinase as well as the activation of Akt in cells. One molecule in particular, compound 17, has potent inhibitory activity against Akt1 and 2 in vivo in a mouse lung and efficacy in a tumor xenograft model.

View Article and Find Full Text PDF

Recent studies indicate that dysregulation of the Akt/PKB family of serine/threonine kinases is a prominent feature of many human cancers. The Akt/PKB family is composed of three members termed Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma. It is currently not known to what extent there is functional overlap between these family members.

View Article and Find Full Text PDF

We developed a high-throughput HTRF (homogeneous time-resolved fluorescence) assay for Akt kinase activity and screened approx. 270000 compounds for their ability to inhibit the three isoforms of Akt. Two Akt inhibitors were identified that exhibited isoenzyme specificity.

View Article and Find Full Text PDF

Currently, there is no therapy for men with androgen-refractory prostate cancer that substantially extends survival. This report characterizes by in vitro and in vivo techniques a new chemotherapeutic that is composed of desacetyl-vinblastine covalently linked to a peptide that contains a peptide bond that can be hydrolyzed by prostate-specific antigen (PSA). This compound (referred to as vinblastine-conjugate) is minimally toxic to cells in culture which do not express PSA.

View Article and Find Full Text PDF