Publications by authors named "Karen L Syres"

Ionic liquids (ILs) supported on oxide surfaces are being investigated for numerous applications including catalysis, batteries, capacitors, transistors, lubricants, solar cells, corrosion inhibitors, nanoparticle synthesis and biomedical applications. The study of ILs with oxide surfaces presents challenges both experimentally and computationally. The interaction between ILs and oxide surfaces can be rather complex, with defects in the oxide surface playing a key role in the adsorption behaviour and resulting electronic properties.

View Article and Find Full Text PDF

The interactions between three small molecules, water (HO), sulfur dioxide (SO) and acetone ((CH)CO), with the ionic liquid (IL) 1-octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF], have been determined using line of sight temperature programmed desorption (LOSTPD) from a gold surface. Multilayers of the IL were deposited by physical vapour deposition with multilayers of the small molecular species (adsorbed from the gas phase) at 90 K. LOSTPD was then carried out with the small molecular species desorbing first from the mixed multilayer, followed at higher temperatures by desorption of the IL from the gold surface.

View Article and Find Full Text PDF

The interaction of the ionic liquid [C C Im][BF ] with anatase TiO , a model photoanode material, has been studied using a combination of synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. The system is of interest as a model for fundamental electrolyte-electrode and dye-sensitized solar cells. The initial interaction involves degradation of the [BF ] anion, resulting in incorporation of F into O vacancies in the anatase surface.

View Article and Find Full Text PDF

Multilayers of 1-octyl-3-methylimidazolium tetrafluoroborate [C8C1Im][BF4] have been deposited on a Cu(111) surface by evaporation in UHV. XPS shows that [C8C1Im][BF4] adsorbs without decomposition for substrate temperatures < 300 K. XPS and UPS data indicate that ionic liquid (IL) deposition onto a 120 K Cu(111) surface results in the IL forming multilayers by a simultaneous-multilayer growth process.

View Article and Find Full Text PDF

Nanocrystalline thin films of PbS are obtained in a straightforward reaction by precipitation at the interface between toluene (containing a Pb precursor) and water (containing Na2S). Lead thiobiuret [Pb(SON(CN(i)Pr2)2)2] and lead diethyldithiocarbamate [Pb(S2CNEt2)2] precursors are used. The films are characterized by X-ray diffraction and electron microscopy, revealing typical particle sizes of 10-40 nm and preferred (200) orientation.

View Article and Find Full Text PDF

The charge dynamics at the surface of the transparent conducting oxide and photoanode material ZnO are investigated in the presence and absence of light-harvesting colloidal quantum dots (QDs). The time-resolved change in surface potential upon photoexcitation has been measured in the m-plane ZnO (101[combining macron]0) using a laser pump-synchrotron X-ray probe methodology. By varying the oxygen annealing conditions, and hence the oxygen vacancy concentration of the sample, we find that dark carrier lifetimes at the ZnO surface vary from hundreds of μs to ms timescales, i.

View Article and Find Full Text PDF

Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) techniques have been used to study the adsorption of dopamine on a rutile TiO2 (110) single crystal. Photoemission results suggest that dopamine bonds through the oxygen molecules in a bidentate fashion. From the data, it is ambiguous whether the oxygens bond to the same 5-fold coordinated surface titanium atom or bridges across two, although based on the bonding of pyrocatechol on rutile TiO2 (110), it is likely that the dopamine bridges two titanium atoms.

View Article and Find Full Text PDF

The interaction of organic molecules with titanium dioxide surfaces has been the subject of many studies over the last few decades. Numerous surface science techniques have been utilised to understand the often complex nature of these systems. The reasons for studying these systems are hugely diverse given that titanium dioxide has many technological and medical applications.

View Article and Find Full Text PDF