Quantification of variation in levels of spontaneously occurring cancer driver mutations (CDMs) was developed to assess clonal expansion and predict future risk of neoplasm development. Specifically, an error-corrected next-generation sequencing method, CarcSeq, and a mouse CarcSeq panel (analogous to human and rat panels) were developed and used to quantify low-frequency mutations in a panel of amplicons enriched in hotspot CDMs. Mutations in a subset of panel amplicons, Braf, Egfr, Kras, Stk11, and Tp53, were related to incidence of lung neoplasms at 2 years.
View Article and Find Full Text PDFThe ability to deduce carcinogenic potential from subchronic, repeat dose rodent studies would constitute a major advance in chemical safety assessment and drug development. This study investigated an error-corrected NGS method (CarcSeq) for quantifying cancer driver mutations (CDMs) and deriving a metric of clonal expansion predictive of future neoplastic potential. CarcSeq was designed to interrogate subsets of amplicons encompassing hotspot CDMs applicable to a variety of cancers.
View Article and Find Full Text PDFThere is a need for scientifically-sound, practical approaches to improve carcinogenicity testing. Advances in DNA sequencing technology and knowledge of events underlying cancer development have created an opportunity for progress in this area. The long-term goal of this work is to develop variation in cancer driver mutation (CDM) levels as a metric of clonal expansion of cells carrying CDMs because these important early events could inform carcinogenicity testing.
View Article and Find Full Text PDFA model that recapitulates development of acquired therapeutic resistance is needed to improve oncology drug development and patient outcomes. To achieve this end, we established methods for the preparation and growth of spheroids from primary human lung adenocarcinomas, including methods to culture, passage, monitor growth, and evaluate changes in mutational profile over time. Primary lung tumor spheroids were cultured in Matrigel® with varying concentrations of erlotinib, a small molecule kinase inhibitor of epidermal growth factor receptor (EGFR) that is ineffective against KRAS mutant cells.
View Article and Find Full Text PDFAllele-specific competitive blocker PCR (ACB-PCR) is a sensitive and quantitative approach for the selective amplification of a specific base substitution. Using the ACB-PCR technique, hotspot cancer-driver mutations (tumor-relevant mutations in oncogenes and tumor suppressor genes, which confer a selective growth advantage) are being developed as quantitative biomarkers of cancer risk. ACB-PCR employs a mutant-specific primer (with a 3'-penultimate mismatch relative to the mutant DNA sequence, but a double 3'-terminal mismatch relative to the wild-type DNA sequence) to selectively amplify rare mutant DNA molecules.
View Article and Find Full Text PDFCancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence.
View Article and Find Full Text PDFInformation regarding the role of low-frequency hotspot cancer-driver mutations (CDMs) in breast carcinogenesis and therapeutic response is limited. Using the sensitive and quantitative Allele-specific Competitor Blocker PCR (ACB-PCR) approach, mutant fractions (MFs) of six CDMs ( H1047R and E545K, G12D and G12V, G12D, and V600E) were quantified in invasive ductal carcinomas (IDCs; including ~20 samples per subtype). Measurable levels (i.
View Article and Find Full Text PDFSomatic mutations accumulate in the human genome and are correlated with increased cancer incidence as humans age. The standard model for studying the carcinogenic effects of exposures for human risk assessment is the rodent 2-year carcinogenicity assay. However, there is little information regarding the effect of age on cancer-driver gene mutations in these models.
View Article and Find Full Text PDFLarge-scale sequencing efforts have described the mutational complexity of individual cancers and identified mutations prevalent in different cancers. As a complementary approach, allele-specific competitive blocker PCR (ACB-PCR) is being used to quantify levels of hotspot cancer driver mutations (CDMs) with high sensitivity, to elucidate the tissue-specific properties of CDMs, their occurrence as tumor cell subpopulations, and their occurrence in normal tissues. Here we report measurements of PIK3CA H1047R mutant fraction (MF) in normal colonic mucosa, normal lung, colonic adenomas, colonic adenocarcinomas, and lung adenocarcinomas.
View Article and Find Full Text PDFEthylene oxide (EO) is a direct acting alkylating agent; in vitro and in vivo studies indicate that it is both a mutagen and a carcinogen. However, it remains unclear whether the mode of action (MOA) for cancer for EO is a mutagenic MOA, specifically via point mutation. To investigate the MOA for EO-induced mouse lung tumors, male Big Blue (BB) B6C3F1 mice (10/group) were exposed to EO by inhalation, 6 hr/day, 5 days/week for 4 (0, 10, 50, 100, or 200 ppm EO), 8, or 12 weeks (0, 100, or 200 ppm EO).
View Article and Find Full Text PDFFemales deficient in the glutamate cysteine ligase modifier subunit (Gclm) of the rate-limiting enzyme in glutathione synthesis are more sensitive to ovarian follicle depletion and tumorigenesisby prenatal benzo[a]pyrene (BaP) exposure than Gclm+/+ mice. We investigated effects of prenatal exposure to BaP on reproductive development and ovarian mutations in Kras, a commonly mutated gene in epithelial ovarian tumors. Pregnantmice were dosed from gestational day 6.
View Article and Find Full Text PDFMutant cancer subpopulations have the potential to derail durable patient responses to molecularly targeted cancer therapeutics, yet the prevalence and size of such subpopulations are largely unexplored. We employed the sensitive and quantitative Allele-specific Competitive Blocker PCR approach to characterize mutant cancer subpopulations in ductal carcinomas (DCs), examining five specific hotspot point mutations (PIK3CA H1047R, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E). As an approach to aid interpretation of the DC results, the mutations were also quantified in normal breast tissue.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
August 2015
This study investigated whether Kras mutation is an early event in the development of lung tumors induced by inhalation of particulate vanadium pentoxide (VP) aerosols. A National Toxicology Program tumor bioassay of inhaled particulate VP aerosols established that VP-induced alveolar/bronchiolar carcinomas of the B6C3F1 mouse lung carried Kras mutations at a higher frequency than observed in spontaneous mouse lung tumors. Therefore, this study sought to: (1) characterize any Kras mutational response with respect to VP exposure concentration, and (2) investigate the possibility that amplification of preexisting Kras mutation is an early event in VP-induced mouse lung tumorigenesis.
View Article and Find Full Text PDFAim: This study quantified low-frequency mutations in normal lung and lung adenocarcinomas, to understand their potential significance in the development of acquired resistance to EGFR-targeted therapies.
Materials & Methods: Allele-specific Competitive Blocker-PCR was used to quantify codon 12 GAT (G12D) and GTT (G12V) mutation in 19 normal lung and 21 lung adenocarcinoma samples.
Results: Lung adenocarcinomas had codon 12 GAT and GTT geometric mean mutant fractions of 1.
Ethylene oxide (EO) is a genotoxicant and a mouse lung carcinogen, but whether EO is carcinogenic through a mutagenic mode of action remains unclear. To investigate this question, 8-week-old male Big Blue B6C3F₁ mice (10 mice/group) were exposed to EO by inhalation-6 h/day, 5 days/week for 4 weeks (0, 10, 50, 100, or 200 ppm EO) and 8 or 12 weeks (0, 100, or 200 ppm EO). Lung DNA samples were analyzed for levels of 3 K-ras codon 12 mutations (GGT→GAT, GGT→GTT, and GGT→TGT) using ACB-PCR.
View Article and Find Full Text PDFThe molecular pathogenesis of papillary thyroid carcinoma (PTC) is largely attributed to chromosomal rearrangements and point mutations in genes within the MAPK pathway (i.e., BRAF and RAS).
View Article and Find Full Text PDFExpert Rev Mol Diagn
July 2012
Understanding the extent to which specific tumor mutations impact or mediate patient response to particular cancer therapies has become a rapidly increasing area of research. Recent research findings regarding four predominant mutational targets (KRAS, BRAF, EGFR and PIK3CA) show that these tumor mutations have predictive power for identifying which patients are likely to respond to particular therapies, and have prognostic significance irrespective of treatment. However, in this regard, the literature is frequently nuanced and sometimes contradictory.
View Article and Find Full Text PDFAristolochic acid (AA) is a strong cytotoxic nephrotoxin and carcinogen, which induces forestomach and kidney tumors in mice and is associated with development of urothelial cancer in humans. This study sought to gain mechanistic insight into AAI-induced carcinogenesis through analysis of a tumor-relevant endpoint. Female Hupki mice were treated daily with 5 mg AAI/kg body weight by gavage for 3, 12, or 21 days.
View Article and Find Full Text PDF