Publications by authors named "Karen L Ericson"

Alkaline phosphatase (ALP) is detected in most human tissues. However, ALP activity is routinely assayed using high concentrations of artificial colorimetric substrates in phosphate-free laboratory buffers at lethal pH. Hypophosphatasia (HPP) is the inborn-error-of-metabolism caused by loss-of-function mutation(s) of the ALPL gene that encodes the ALP isoenzyme expressed in bone, liver, kidney, and elsewhere and is therefore designated "tissue-nonspecific" ALP (TNSALP).

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is the heritable dento-osseous disease caused by loss-of-function mutation(s) of the gene ALPL that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). TNSALP is a cell-surface homodimeric phosphomonoester phosphohydrolase expressed in healthy people especially in the skeleton, liver, kidneys, and developing teeth. In HPP, diminished TNSALP activity leads to extracellular accumulation of its natural substrates including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5'-phosphate (PLP), the principal circulating form of vitamin B (B).

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP), the principal circulating form of vitamin B (B), is elevated in the plasma of individuals with hypophosphatasia (HPP). HPP is the inborn-error-of-metabolism caused by loss-of-function mutation(s) of ALPL, the gene that encodes the "tissue-nonspecific" isoenzyme of alkaline phosphatase (TNSALP). PLP accumulates extracellularly in HPP because it is a natural substrate of this cell-surface phosphomonoester phosphohydrolase.

View Article and Find Full Text PDF

Alkaline phosphatase (ALP) in humans comprises a family of four cell-surface phosphomonoester phosphohydrolase isozymes. Three genes separately encode the "tissue-specific" ALPs whereas the fourth gene encodes ubiquitous homodimeric "tissue-nonspecific" ALP (TNSALP) richly expressed in bone, liver, kidney, and developing teeth. TNSALP monomers have five putative N-linked glycosylation sites where different post-translational modifications account for this isozyme's distinctive physicochemical properties in different organs.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is the inborn-error-of-metabolism due to loss-of-function mutation(s) of the ALPL (TNSALP) gene that encodes the tissue non-specific isoenzyme of alkaline phosphatase (TNSALP). TNSALP represents a family of cell-surface phosphohydrolases differing by post-translational modification that is expressed especially in the skeleton, liver, kidney, and developing teeth. Thus, the natural substrates of TNSALP accumulate extracellularly in HPP including inorganic pyrophosphate (PPi), a potent inhibitor of mineralization, and pyridoxal 5'-phosphate (PLP), the principal circulating form of vitamin B.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is caused by loss-of-function mutation(s) within the gene TNSALP that encodes the "tissue-nonspecific" isoenzyme of alkaline phosphatase (TNSALP). In HPP, inorganic pyrophosphate, an inhibitor of mineralization and substrate for TNSALP, accumulates extracellularly often leading to rickets or osteomalacia and tooth loss, and sometimes to craniosynostosis and calcium crystal arthropathies. HPP's remarkably broad-ranging expressivity spans stillbirth from profound skeletal hypomineralization to adult-onset dental problems or arthropathies without bone disease, which is largely explained by autosomal recessive versus autosomal dominant transmission from among several hundred, usually missense, TNSALP mutations.

View Article and Find Full Text PDF

Generalized arterial calcification (AC) of infancy (GACI) is an autosomal recessive disorder that features hydroxyapatite deposition within arterial elastic fibers. Untreated, approximately 85% of GACI patients die by 6 months of age from cardiac ischemia and congestive heart failure. The first-generation bisphosphonate etidronate (EHDP; ethane-1-hydroxy-1,1-diphosphonic acid, also known as 1-hydroxyethylidene-bisphosphonate) inhibits bone resorption and can mimic endogenous inorganic pyrophosphate by blocking mineralization.

View Article and Find Full Text PDF

We report a 55-year-old woman who suffered atypical subtrochanteric femoral fractures (ASFFs) after 4 years of exposure to alendronate and then zolendronate given for "osteoporosis." Before alendronate treatment, she had low bone mineral density. After several months of therapy, metatarsal stress fractures began.

View Article and Find Full Text PDF

Vitamin B(6) (pyridoxine) metabolism in diabetes has never been investigated except for a few reports on plasma pyridoxal 5'-phosphate (PLP). These studies indicated that this most active (coenzyme) vitamer can be reduced. The present clinical investigation aimed to measure all vitamers in blood and urine by high performance liquid chromatography as well as important related factors, in women during active reproductive years.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is caused by deactivating mutation(s) within the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). Patients manifest rickets or osteomalacia and dental disease ranging from absence of skeletal mineralization in utero to only loss of adult dentition. Until recently, HPP skeletal disease in utero was thought to always predict a lethal outcome.

View Article and Find Full Text PDF

Objectives: This investigation on a homogenous cohort of young adult Caucasian type 1 diabetic (IDDM) patients (1) aimed at studying the occurrence of low bone mineral density (BMD) at an early stage prior to menopause (i.e., during the first decade after peak bone mass) and (2) elucidating the possible mechanisms underlying IDDM-induced bone complication.

View Article and Find Full Text PDF

Objectives: We investigated the stability of 36 analytes related to clinical chemistry in a controlled storage study.

Design And Methods: Blood was collected from 11 subjects and was maintained for 45 min, 2.5 h, 5 h, or 24 h after phlebotomy before centrifugation.

View Article and Find Full Text PDF

Context: Hypophosphatasia (HPP) is a heritable metabolic disorder of the skeleton that includes variable expressivity conditioned by gene dosage effect and the variety of mutations in the tissue nonspecific alkaline phosphatase (TNSALP) gene. Patient age when skeletal problems first manifest generally predicts the clinical course, with perinatal HPP causing bone disease in utero with postnatal lethality.

Objective: Our objective was to identify TNSALP mutations and characterize the inheritance pattern of a family with clinically variable HPP with one child manifesting in utero with long bone deformity but showing spontaneous prenatal and postnatal improvement.

View Article and Find Full Text PDF

Cation-exchange HPLC analysis of urine from dogs given large daily doses of pyridoxamine revealed an unidentified metabolite hypothesized to be N-methylpyridoxamine. Identity was established by N-methylpyridoxamine synthesis and HPLC comparison to the canine metabolite. Compound synthesis was confirmed by IR, NMR, UV-vis and emission spectroscopy.

View Article and Find Full Text PDF

Pyridoxine-responsive seizures (PRS) and the role of pyridoxine (PN, vitamin B(6)) in hypophosphatasia (HPP) are incompletely understood. Typically, PRS and HPP are rare, independent, metabolic disorders. In PRS, seizures resist standard anticonvulsants apart from PN, yet have a good prognosis.

View Article and Find Full Text PDF

The sensitivity of fluorescent detection of the biologically active form of Vitamin B-6, pyridoxal 5'-phosphate (PLP), in biological samples has been improved approximately four-fold by adopting chlorite as a post-column derivatization reagent (instead of bisulfite) in high-performance liquid chromatography (HPLC) separation. Chlorite oxidizes PLP to the more fluorescent 4-pyridoxic acid 5'-phosphate, and avoids the toxicity and heating of the cyanide procedure. Detection of another major metabolite, 4-pyridoxic acid (4-PA), is not effected.

View Article and Find Full Text PDF

Background: Renal insufficiency is associated with altered vitamin B-6 metabolism. We have observed high concentrations of 4-pyridoxic acid, the major catabolite of vitamin B-6 metabolism, in plasma during renal insufficiency.

Objective: The objective was to evaluate the renal handling of 4-pyridoxic acid and the effects of renal dysfunction on vitamin B-6 metabolism.

View Article and Find Full Text PDF