Publications by authors named "Karen Kuropatwinski"

The mechanistic target of rapamycin (mTOR) is a PI3K-related kinase that regulates cell growth, proliferation and survival in response to the availability of energy sources and growth factors. Cancer development and progression is often associated with constitutive activation of the mTOR pathway, thus justifying mTOR inhibition as a promising approach to cancer treatment and prevention. However, development of previous rapamycin analogues has been complicated by their induction of adverse side effects and variable efficacy.

View Article and Find Full Text PDF

The development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters.

View Article and Find Full Text PDF

The circadian clock generates and regulates many daily physiological, metabolic and behavioral rhythms as well as acute responses to various types of stresses including those induced by anticancer treatment. It has been proposed that modulatory function of the clock may be used for improving the therapeutic efficacy of established anti-cancer treatments. In order to rationally exploit this mechanism, more information is needed to fully characterize the functional status of the molecular clock in tumors of different cellular origin; however, the data describing tumor clocks are still inconsistent.

View Article and Find Full Text PDF

Circadian clocks regulate homeostasis and mediate responses to stressors. Lactation is one of the most energetically demanding periods of an adult female's life. Peripartum changes occur in almost every organ so the dam can support neonatal growth through milk production while homeostasis is maintained.

View Article and Find Full Text PDF

There is a growing body of evidence that components of the circadian clock are involved in modulation of numerous signaling pathways, and that clock deregulation due to environmental or genetic factors contributes to the development of various pathologies, including cancer. Previous work performed in tissue culture and in in vivo mouse models defined mammalian PERIOD proteins as tumor suppressors, although some experimental inconsistencies (the use of mice on mixed genetic background, lack of sexual discrimination) did not allow a definitive conclusion. To address this issue in a systematic way, we performed a detailed analysis comparing the incidence of tumor development after low-dose ionizing radiation in male and female wild-type, Per1(-/-), and Per2(-/-) mice.

View Article and Find Full Text PDF

The nutrient-sensing mTOR (mammalian Target of Rapamycin) pathway regulates cellular metabolism, growth functions, and proliferation and is involved in age-related diseases including cancer, type 2 diabetes, neurodegeneration and cardiovascular disease. The inhibition of mTOR by rapamycin, or calorie restriction, has been shown to extend lifespan and delays tumorigenesis in several experimental models suggesting that rapamycin may be used for cancer prevention. This requires continuous long-term treatment making oral formulations the preferred choice of administration route.

View Article and Find Full Text PDF

The circadian clock controls many physiological parameters including immune response to infectious agents, which is mediated by activation of the transcription factor NF-κB. It is widely accepted that circadian regulation is based on periodic changes in gene expression that are triggered by transcriptional activity of the CLOCK/BMAL1 complex. Through the use of a mouse model system we show that daily variations in the intensity of the NF-κB response to a variety of immunomodulators are mediated by core circadian protein CLOCK, which can up-regulate NF-κB-mediated transcription in the absence of BMAL1; moreover, BMAL1 counteracts the CLOCK-dependent increase in the activation of NF-κB-responsive genes.

View Article and Find Full Text PDF

Selenium compounds are known as cancer preventive agents and are also able to ameliorate the toxicity associated with anti-cancer radiation and chemotherapy in mouse models. Sensitivity to the toxicity of chemotherapy is also modulated by the circadian clock, molecular time-keeping system that underlie daily fluctuations in multiple physiological and biochemical processes. Here we show that these two mechanisms are interconnected.

View Article and Find Full Text PDF

The circadian clock regulates biological processes from gene expression to organism behavior in a precise, sustained rhythm that is generated at the unicellular level by coordinated function of interlocked transcriptional feedback loops and post-translational modifications of core clock proteins. CLOCK phosphorylation regulates transcriptional activity, cellular localization and stability; however little is known about the specific residues and enzymes involved. We have identified a conserved cluster of serines that include, Ser431, which is a prerequisite phosphorylation site for the generation of BMAL dependent phospho-primed CLOCK and for the potential GSK-3 phosphorylation at Ser427.

View Article and Find Full Text PDF

Abnormal accumulation and activation of receptor tyrosine kinase Ron (recepteur d'origine nantais) has been demonstrated in a variety of primary human cancers. We show that RNA interference-mediated knockdown of Ron kinase in a highly tumorigenic colon cancer cell line led to reduced proliferation as compared with the control cells. Decreased Ron expression sensitized HCT116 cells to growth factor deprivation stress-induced apoptosis as reflected by increased DNA fragmentation and caspase 3 activation.

View Article and Find Full Text PDF

FET cells, derived from an early-stage colon carcinoma, are nontumorigenic in athymic mice. Stable transfection of a dominant-negative transforming growth factor beta (TGFbeta) type II receptor (DNRII) into FET cells that express autocrine TGFbeta shows loss of TGFbeta signaling and increased tumorigenicity in vivo indicating tumor suppressor activity of TGFbeta signaling in this model. The ability of tumorigenic cells to withstand growth factor and nutrient deprivation stress (GFDS) is widely regarded as a key attribute for tumor formation and progression.

View Article and Find Full Text PDF

Mutations in the PIK3CA gene are common in human cancers, including colon cancer. We compared two pairs of colon cancer cells (HCT116 and DLD1) bearing only the wild-type (WT) or mutant (MUT) PIK3CA allele for their survival capacity under stress conditions in vitro as well as their metastatic properties in an in vivo orthotopic model. When subjected to growth factor deprivation stress (GFDS), the MUT PIK3CA cells displayed resistance to GFDS-induced apoptosis relative to the WT cells.

View Article and Find Full Text PDF

PIK3CA, encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K), is mutated in a variety of human cancers. We screened the colon cancer cell lines previously established in our laboratory for PIK3CA mutations and found that four of them harbored gain of function mutations. We have now compared a panel of mutant and wild-type cell lines for cell proliferation and survival in response to stress.

View Article and Find Full Text PDF