E3 ubiquitin ligases have been positively or negatively implicated in the response to water-deficit stress. Here we demonstrate that rice XA21 binding protein 3 (XB3), the founder member of an E3 ubiquitin ligase gene family, is induced by drought stress and, when over-expressed, enhances survival of rice plants under water deficit. Down-regulation of XB3 increases rice sensitivity to drought.
View Article and Find Full Text PDFA transformation in plant cell wall evolution marked the emergence of grasses, grains and related species that now cover much of the globe. Their tough, less digestible cell walls arose from a new pattern of cross-linking between arabinoxylan polymers with distinctive ferulic acid residues. Despite extensive study, the biochemical mechanism of ferulic acid incorporation into cell walls remains unknown.
View Article and Find Full Text PDFTraditionally, patients presenting to primary care with severe eczema would be referred to a dermatology clinic for an in-person specialist appointment. With the rise of teledermatology, dermatologists are instead dispensing tailored written advice based on information provided in the referral. However, there is currently minimal literature assessing whether this advice translates into relevant prescriptions.
View Article and Find Full Text PDFNearly all eukaryotes carry DNA transposons of the Robertson's () superfamily, a widespread source of genome instability and genetic variation. Despite their pervasive impact on host genomes, much remains unknown about the evolution of these transposons. Transposase recognition of terminal inverted repeats (TIRs) is thought to drive and constrain coevolution of transposase genes and TIRs.
View Article and Find Full Text PDFMaize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species).
View Article and Find Full Text PDFPrevious studies of tomato rootstock effects on fruit quality have yielded mixed results, and few attempts have been made to systematically examine the association between rootstock characteristics and tomato fruit quality. In this study, grape tomato ('BHN 1022') and beefsteak tomato ('Skyway') were grafted onto four rootstocks ['Estamino' (vigorous and "generative"), 'DR0141TX' (vigorous and "vegetative"), 'RST-04-106-T' (uncharacterized), and 'SHIELD RZ F1 (61-802)' (mid-vigor, uncharacterized)] and compared to non-grafted scion controls for two growing seasons (Spring and Fall in Florida) in organically managed high tunnels. In both seasons and for both scions, the two vigorous rootstocks, regardless of their designation as "vegetative" ('DR0141TX') or "generative" ('Estamino'), exhibited negative impacts on dry matter content, soluble solids content (SSC), SSC/titratable acidity (TA), lycopene, and ascorbic acid contents.
View Article and Find Full Text PDFThe appropriate selection of rootstock-scion combinations to improve yield and fully realize grafting benefits requires an in-depth understanding of rootstock-scion synergy. Toward this end, we grafted two determinate-type scions [grape tomato ('BHN 1022') and beefsteak tomato ('Skyway')] onto four rootstocks with different characteristics to examine plant growth, yield performance, biomass production, and fruit mineral nutrient composition. The study was conducted during two growing seasons (spring and fall plantings in Florida) under organic production in high tunnels with the non-grafted scions as controls.
View Article and Find Full Text PDFThe maize (Zea mays) ear represents one of the most striking domestication phenotypes in any crop species, with the cob conferring an exceptional yield advantage over the ancestral form of teosinte. Remodeling of the grain-bearing surface required profound developmental changes. However, the underlying mechanisms remain unclear and can only be partly attributed to the known domestication gene Teosinte glume architecture 1 (Tga1).
View Article and Find Full Text PDFMaternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose.
View Article and Find Full Text PDFIn maize, starch mutants have facilitated characterization of key genes involved in endosperm starch biosynthesis such as () and (). While many starch biosynthesis enzymes have been characterized, the mechanisms of certain genes (including ) are yet undefined, and very little is understood about the regulation of starch biosynthesis. As a model, we utilize commercially important sweet corn mutations, and , to genetically perturb starch production in the endosperm.
View Article and Find Full Text PDFAustralas J Dermatol
November 2021
Sugar supply is a key component of hypoxia tolerance and acclimation in plants. However, a striking gap remains in our understanding of mechanisms governing sugar impacts on low-oxygen responses. Here, we used a maize (Zea mays) root-tip system for precise control of sugar and oxygen levels.
View Article and Find Full Text PDFSequence-indexed insertional libraries in maize () are fundamental resources for functional genetics studies. Here, we constructed a () insertional library in the B73 inbred background designated A total of 1,152 -tagged F-families were sequenced using the -seq approach. We detected 225,936 genomic insertion sites and 41,086 high quality germinal insertions covering 16,392 of the annotated maize genes (37% of the B73v4 genome).
View Article and Find Full Text PDFAustralas J Dermatol
February 2021
Background: Emergency Medicine Telehealth (TeleEM) represents an opportunity to work directly with referral centres, rural facilities and underserved areas to mitigate unnecessary testing, optimise resource utilisation and facilitate patient transfers across health systems. To optimise the impact of a TeleEM programme, a tool is needed to remotely monitor patient activity in multiple emergency department facilities, concurrently.
Methods: After identifying data sources for activation criteria put forth by the TeleEM operations group, rules were constructed within the electronic health record to facilitate data checks and ultimately produce a yes/no response if the category's conditions were met.
Scleroderma is a rare complication of carcinoid syndrome and is usually encountered in the setting of a metastatic primary neuroendocrine tumour of the distal ileum. Associated endocardial fibrosis is a frequent finding and the condition carries a poor prognosis. We report a case of scleroderma occurring in a 72-year-old female with metastatic neuroendocrine carcinoma and associated pericardial fibrosis.
View Article and Find Full Text PDFObjective: Evaluate an established scribe program on throughput and revenue capture in an Emergency Department (ED) undergoing an EMR transition.
Methods: A prospective cohort design comparing patients managed with and without scribes in an academic ED. Throughput metrics (medians, min) and relative value units (RVUs, means) were collected.
Cereal yields decrease when grain fill proceeds under conditions of prolonged, moderately elevated temperatures. Endosperm-endogenous processes alter both rate and duration of dry weight gain, but underlying mechanisms remain unclear. Heat effects could be mediated by either abnormal, premature cessation of storage compound deposition or accelerated implementation of normal development.
View Article and Find Full Text PDFThe maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms.
View Article and Find Full Text PDFPhotosensitive disorders are common, affecting up to 5% of HIV-positive patients. HIV itself induces photosensitivity but photoaggravated drug reactions, porphyria cutanea tarda and nutritional disorders such as pellagra are also more common in patients with HIV. In South Africa, actinic lichenoid leukomelanoderma of HIV is a unique photosensitive disorder which is associated with advanced HIV.
View Article and Find Full Text PDFPlant J
March 2018
Maize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone-9 (PQ-9) biosynthesis in the plastid. The resulting PQ-9 deficiency prohibits photosynthetic electron transfer and eliminates PQ-9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis.
View Article and Find Full Text PDF