Publications by authors named "Karen Kadner"

Background And Objectives: Early treatment of multiple sclerosis (MS) reduces disease activity and the risk of long-term disease progression. Effectiveness of ocrelizumab is established in relapsing MS (RMS); however, data in early RMS are lacking. We evaluated the 4-year effectiveness and safety of ocrelizumab as a first-line therapy in treatment-naive patients with recently diagnosed relapsing-remitting MS (RRMS).

View Article and Find Full Text PDF

Introduction: Ocrelizumab is an approved intravenously administered anti-CD20 antibody for multiple sclerosis (MS). The safety profile and patient preference for conventional versus shorter ocrelizumab infusions were investigated in the ENSEMBLE PLUS study.

Methods: ENSEMBLE PLUS was a randomized, double-blind substudy to the single-arm ENSEMBLE study (NCT03085810), comparing outcomes in patients with early-stage relapsing-remitting MS receiving ocrelizumab 600 mg over the approved 3.

View Article and Find Full Text PDF

Background And Purpose: Using the treatment goal of "no evidence of disease activity" (NEDA) incorporating magnetic resonance imaging (MRI) re-baselining, we aimed to assess the efficacy of ocrelizumab in patients with relapsing-remitting multiple sclerosis with a prior suboptimal response, defined by MRI or relapse criteria, to one or two disease-modifying therapies (DMTs).

Methods: CASTING was a prospective, international, multicenter, single-arm, open-label phase 3 trial (NCT02861014). Patients (Expanded Disability Status Scale [EDSS] score ≤ 4.

View Article and Find Full Text PDF

Biomaterial injection-based therapies have showed cautious success in restoration of cardiac function and prevention of adverse remodelling into heart failure after myocardial infarction (MI). However, the underlying mechanisms are not well understood. Computational studies utilised simplified representations of the therapeutic myocardial injectates.

View Article and Find Full Text PDF

Biomaterials are increasingly being investigated as a means of reducing stress within the ventricular wall of infarcted hearts and thus attenuating pathological remodelling and loss of function. In this context, we have examined the influence of timing of delivery on the efficacy of a polyethylene glycol hydrogel polymerised with an enzymatically degradable peptide sequence. Delivery of the hydrogel immediately after infarct induction resulted in no observable improvements, but a delay of one week in delivery resulted in significant increases in scar thickness and fractional shortening, as well as reduction in end-systolic diameter against saline controls and immediately injected hydrogel at both 2 and 4 weeks post-infarction (p < 0.

View Article and Find Full Text PDF