In spike-timing-dependent plasticity (STDP), the direction and degree of synaptic modification are determined by the coherence of pre- and postsynaptic activities within a neuron. However, in the adult rat hippocampus, it remains unclear whether STDP-like mechanisms in a neuronal population induce synaptic potentiation of a long duration. Thus, we asked whether the magnitude and maintenance of synaptic plasticity in a population of CA1 neurons differ as a function of the temporal order and interval between pre- and postsynaptic activities.
View Article and Find Full Text PDFVarious epigenetic modifications, including histone lysine methylation, play an integral role in learning and memory. The importance of the histone lysine methyltransferase complex G9a/GLP and its associated histone H3 lysine K9 dimethylation in memory formation and cognition, has garnered the attention of researchers in the past decade. Recent studies feature G9a/GLP as the 'bidirectional regulator of synaptic plasticity', the neural correlate of memory.
View Article and Find Full Text PDFPhosphorylation of the eukaryotic translation initiation factor, eIF2α, by stress-activated protein kinases and dephosphorylation by the growth arrest and DNA damage-inducible protein (GADD34)-containing phosphatase is a central node in the integrated stress response. Mass spectrometry demonstrated GADD34 acetylation at multiple lysines. Substituting K and K with alanines or glutamines did not impair GADD34's ability to recruit protein phosphatase 1α (PP1α) or eIF2α, suggesting that GADD34 acetylation did not modulate eIF2α phosphatase activity.
View Article and Find Full Text PDF