Publications by authors named "Karen K Siu"

Adult Neural Stem Cells (aNSCs) in the ventricular-subventricular zone (V-SVZ) are largely quiescent. Here, we characterize the mechanism underlying the functional role of a cell-signalling inhibitory protein, LRIG1, in the control of aNSCs proliferation. Using Lrig1 knockout models, we show that Lrig1 ablation results in increased aNSCs proliferation with no change in neuronal progeny and that this hyperproliferation likely does not result solely from activation of the epidermal growth factor receptor (EGFR).

View Article and Find Full Text PDF

Fertilization is defined as the union of two gametes. During fertilization, sperm and egg fuse to form a diploid zygote to initiate prenatal development. In mammals, fertilization involves multiple ordered steps, including the acrosome reaction, zona pellucida penetration, sperm-egg attachment, and membrane fusion.

View Article and Find Full Text PDF

Nucleolin is an essential cellular receptor to human respiratory syncytial virus (RSV). Pharmacological targeting of the nucleolin RNA binding domain RBD1,2 can inhibit RSV infections in vitro and in vivo; however, the site(s) on RBD1,2 which interact with RSV are not known. We undertook a series of experiments designed to: document RSV-nucleolin co-localization on the surface of polarized MDCK cells using immunogold electron microscopy, to identify domains on nucleolin that physically interact with RSV using biochemical methods and determine their biological effects on RSV infection in vitro, and to carry out structural analysis toward informing future RSV drug development.

View Article and Find Full Text PDF

Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease.

View Article and Find Full Text PDF

The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances.

View Article and Find Full Text PDF

Data-constrained modeling is a method that enables three-dimensional distribution of mineral phases and porosity in a sample to be modeled based on micro-computed tomography scans acquired at different X-ray energies. Here we describe an alternative method for measuring porosity, synchrotron K-edge subtraction using xenon gas as a contrast agent. Results from both methods applied to the same Darai limestone sample are compared.

View Article and Find Full Text PDF

To assess potential therapies for respiratory diseases in which mucociliary transit (MCT) is impaired, such as cystic fibrosis and primary ciliary dyskinesia, a novel and non-invasive MCT quantification method has been developed in which the transit rate and behaviour of individual micrometre-sized deposited particles are measured in live mice using synchrotron phase-contrast X-ray imaging. Particle clearance by MCT is known to be a two-phase process that occurs over a period of minutes to days. Previous studies have assessed MCT in the fast-clearance phase, ∼20 min after marker particle dosing.

View Article and Find Full Text PDF

Propagation-based phase-contrast X-ray imaging (PB-PCXI) using synchrotron radiation has achieved high-resolution imaging of the lungs of small animals both in real time and in vivo. Current studies are applying such imaging techniques to lung disease models to aid in diagnosis and treatment development. At the Australian Synchrotron, the Imaging and Medical beamline (IMBL) is well equipped for PB-PCXI, combining high flux and coherence with a beam size sufficient to image large animals, such as sheep, due to a wiggler source and source-to-sample distances of over 137 m.

View Article and Find Full Text PDF

To determine the efficacy of potential cystic fibrosis (CF) therapies we have developed a novel mucociliary transit (MCT) measurement that uses synchrotron phase contrast X-ray imaging (PCXI) to non-invasively measure the transit rate of individual micron-sized particles deposited into the airways of live mice. The aim of this study was to image changes in MCT produced by a rehydrating treatment based on hypertonic saline (HS), a current CF clinical treatment. Live mice received HS containing a long acting epithelial sodium channel blocker (P308); isotonic saline; or no treatment, using a nebuliser integrated within a small-animal ventilator circuit.

View Article and Find Full Text PDF

The human APOBEC3 family of DNA cytosine deaminases serves as a front-line intrinsic immune response to inhibit the replication of diverse retroviruses. APOBEC3F and APOBEC3G are the most potent factors against HIV-1. As a countermeasure, HIV-1 viral infectivity factor (Vif) targets APOBEC3s for proteasomal degradation.

View Article and Find Full Text PDF

In the airways of those with cystic fibrosis (CF), the leading pathophysiological hypothesis is that an ion channel defect results in a relative decrease in airway surface liquid (ASL) volume, producing thick and sticky mucus that facilitates the establishment and progression of early fatal lung disease. This hypothesis predicts that any successful CF airway treatment for this fundamental channel defect should increase the ASL volume, but up until now there has been no method of measuring this volume that would be compatible with in vivo monitoring. In order to accurately monitor the volume of the ASL, we have developed a new x-ray phase contrast imaging method that utilizes a highly attenuating reference grid.

View Article and Find Full Text PDF

Marsupials are born with immature lungs when compared to eutherian mammals and rely, to various extents, on cutaneous gas exchange in order to meet metabolic requirements. Indeed, the fat-tailed dunnart is born with lungs in the canalicular stage of development and relies almost entirely on the skin for gas exchange at birth; consequently undergoing the majority of lung development in air. Plane radiographs and computed tomography data sets were acquired using phase contrast imaging with a synchrotron radiation source for two marsupial species, the fat-tailed dunnart and the larger tammar wallaby, during the first weeks of postnatal life.

View Article and Find Full Text PDF

Background: The manner in which fluid instillations into mouse nose and lung distribute through the airways is poorly understood. Many agents are delivered in this way for testing as therapeutics, or as challenges designed to establish infections or create systemic drug delivery effects. These agents are delivered into mouse airways with little knowledge of the manner in which doses move through the airways, how long they reside in each region, and where the instilled materials eventually reach.

View Article and Find Full Text PDF

Conodont elements are the earliest vertebrate dental structures. The dental tools on elements responsible for food fracture-cusps and denticles-are usually composed of lamellar crown tissue (a putative enamel homologue) and the enigmatic tissue known as 'white matter'. White matter is unique to conodonts and has been hypothesized to be a functional adaptation for the use of elements as teeth.

View Article and Find Full Text PDF

Particles suspended in the air are inhaled during normal respiration and unless cleared by airway defences, such as the mucociliary transit (MCT) system, they can remain and affect lung and airway health. Synchrotron phase-contrast X-ray imaging (PCXI) methods have been developed to non-invasively monitor the behaviour of individual particles in live mouse airways and in previous studies the MCT behaviour of particles and fibres in the airways of live mice after deposition in a saline carrier fluid have been examined. In this study a range of common respirable pollutant particles (lead dust, quarry dust and fibreglass fibres) as well as marker particles (hollow glass micro-spheres) were delivered into the trachea of live mice using a dry powder insufflator to more accurately mimic normal environmental particulate exposure and deposition via inhalation.

View Article and Find Full Text PDF

During breathing, lung inflation is a dynamic process involving a balance of mechanical factors, including trans-pulmonary pressure gradients, tissue compliance and airway resistance. Current techniques lack the capacity for dynamic measurement of ventilation in vivo at sufficient spatial and temporal resolution to allow the spatio-temporal patterns of ventilation to be precisely defined. As a result, little is known of the regional dynamics of lung inflation, in either health or disease.

View Article and Find Full Text PDF

Conodonts have been considered the earliest skeletonizing vertebrates and their mineralized feeding apparatus interpreted as having performed a tooth function. However, the absence of jaws in conodonts and the small size of their oropharyngeal musculature limits the force available for fracturing food items, presenting a challenge to this interpretation. We address this issue quantitatively using engineering approaches previously applied to mammalian dentitions.

View Article and Find Full Text PDF

Since lung diseases adversely affect airflow during breathing, they must also alter normal lung motion, which can be exploited to detect these diseases. However, standard imaging techniques such as CT and MRI imaging during breath-holds provide little or no information on lung motion and cannot detect diseases that cause subtle changes in lung structure. Phase-contrast X-ray imaging provides images of high contrast and spatial resolution with temporal resolutions that allow multiple images to be acquired throughout the respiratory cycle.

View Article and Find Full Text PDF

A single-exposure quantitative method of x-ray phase contrast imaging, suitable for animal in vivo observations, is described and shown experimentally both for a known static sample and an ex vivo biological airway. The ability to acquire the desired information within a single exposure is important for dynamic samples, as is sufficient sensitivity to reveal small variations in the composition or thickness of such a sample. This approach satisfies both these needs by analyzing how a reference grid pattern is deformed by the presence of the sample, similar to a Shack-Hartmann sensor.

View Article and Find Full Text PDF

High resolution in vivo velocity measurements within the cardiovascular system are essential for accurate calculation of vessel wall shear stress, a highly influential factor for the progression of arterial disease. Unfortunately, currently available techniques for in vivo imaging are unable to provide the temporal resolution required for velocity measurement at physiological flow rates. Advances in technology and improvements in imaging systems are allowing a relatively new technique, X-ray velocimetry, to become a viable tool for such measurements.

View Article and Find Full Text PDF

The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grating quantitative phase contrast for a regime in which the grating period is much greater than the effective pixel size.

View Article and Find Full Text PDF

During respiration, particles suspended in the air are inhaled and unless cleared by airway defences they can remain and affect lung health. Their size precludes the use of standard imaging modalities so we have developed synchrotron phase-contrast X-ray imaging (PCXI) methods to non-invasively monitor the behaviour of individual particles in live mouse airways. In this study we used these techniques to examine post-deposition particle behaviour in the trachea.

View Article and Find Full Text PDF

Biotin synthase (BS) is a member of the "SAM radical" superfamily of enzymes, which catalyze reactions in which the reversible or irreversible oxidation of various substrates is coupled to the reduction of the S-adenosyl-l-methionine (AdoMet) sulfonium to generate methionine and 5'-deoxyadenosine (dAH). Prior studies have demonstrated that these products are modest inhibitors of BS and other members of this enzyme family. In addition, the in vivo catalytic activity of Escherichia coli BS requires expression of 5'-methylthioadenosine/S-adenosyl-l-homocysteine nucleosidase, which hydrolyzes 5'-methylthioadenosine (MTA), S-adenosyl-l-homocysteine (AdoHcy), and dAH.

View Article and Find Full Text PDF

5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH.

View Article and Find Full Text PDF