Publications by authors named "Karen K Kuropatwinski"

The mechanistic target of rapamycin (mTOR) is a PI3K-related kinase that regulates cell growth, proliferation and survival in response to the availability of energy sources and growth factors. Cancer development and progression is often associated with constitutive activation of the mTOR pathway, thus justifying mTOR inhibition as a promising approach to cancer treatment and prevention. However, development of previous rapamycin analogues has been complicated by their induction of adverse side effects and variable efficacy.

View Article and Find Full Text PDF

The development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters.

View Article and Find Full Text PDF

The circadian clock generates and regulates many daily physiological, metabolic and behavioral rhythms as well as acute responses to various types of stresses including those induced by anticancer treatment. It has been proposed that modulatory function of the clock may be used for improving the therapeutic efficacy of established anti-cancer treatments. In order to rationally exploit this mechanism, more information is needed to fully characterize the functional status of the molecular clock in tumors of different cellular origin; however, the data describing tumor clocks are still inconsistent.

View Article and Find Full Text PDF

Circadian clocks regulate homeostasis and mediate responses to stressors. Lactation is one of the most energetically demanding periods of an adult female's life. Peripartum changes occur in almost every organ so the dam can support neonatal growth through milk production while homeostasis is maintained.

View Article and Find Full Text PDF

There is a growing body of evidence that components of the circadian clock are involved in modulation of numerous signaling pathways, and that clock deregulation due to environmental or genetic factors contributes to the development of various pathologies, including cancer. Previous work performed in tissue culture and in in vivo mouse models defined mammalian PERIOD proteins as tumor suppressors, although some experimental inconsistencies (the use of mice on mixed genetic background, lack of sexual discrimination) did not allow a definitive conclusion. To address this issue in a systematic way, we performed a detailed analysis comparing the incidence of tumor development after low-dose ionizing radiation in male and female wild-type, Per1(-/-), and Per2(-/-) mice.

View Article and Find Full Text PDF

The nutrient-sensing mTOR (mammalian Target of Rapamycin) pathway regulates cellular metabolism, growth functions, and proliferation and is involved in age-related diseases including cancer, type 2 diabetes, neurodegeneration and cardiovascular disease. The inhibition of mTOR by rapamycin, or calorie restriction, has been shown to extend lifespan and delays tumorigenesis in several experimental models suggesting that rapamycin may be used for cancer prevention. This requires continuous long-term treatment making oral formulations the preferred choice of administration route.

View Article and Find Full Text PDF

The circadian clock controls many physiological parameters including immune response to infectious agents, which is mediated by activation of the transcription factor NF-κB. It is widely accepted that circadian regulation is based on periodic changes in gene expression that are triggered by transcriptional activity of the CLOCK/BMAL1 complex. Through the use of a mouse model system we show that daily variations in the intensity of the NF-κB response to a variety of immunomodulators are mediated by core circadian protein CLOCK, which can up-regulate NF-κB-mediated transcription in the absence of BMAL1; moreover, BMAL1 counteracts the CLOCK-dependent increase in the activation of NF-κB-responsive genes.

View Article and Find Full Text PDF

Selenium compounds are known as cancer preventive agents and are also able to ameliorate the toxicity associated with anti-cancer radiation and chemotherapy in mouse models. Sensitivity to the toxicity of chemotherapy is also modulated by the circadian clock, molecular time-keeping system that underlie daily fluctuations in multiple physiological and biochemical processes. Here we show that these two mechanisms are interconnected.

View Article and Find Full Text PDF

The circadian clock regulates biological processes from gene expression to organism behavior in a precise, sustained rhythm that is generated at the unicellular level by coordinated function of interlocked transcriptional feedback loops and post-translational modifications of core clock proteins. CLOCK phosphorylation regulates transcriptional activity, cellular localization and stability; however little is known about the specific residues and enzymes involved. We have identified a conserved cluster of serines that include, Ser431, which is a prerequisite phosphorylation site for the generation of BMAL dependent phospho-primed CLOCK and for the potential GSK-3 phosphorylation at Ser427.

View Article and Find Full Text PDF